An energy preserving finite difference scheme for the Poisson-Nernst-Planck system

被引:36
|
作者
He, Dongdong [1 ]
Pan, Kejia [2 ,3 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 092, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Poisson-Nernst-Planck system; Finite difference method; Mass conservation; Ion concentration positivity; Energy decay; DRIFT-DIFFUSION EQUATIONS; VOLUME SCHEME; BEHAVIOR; CONVERGENCE;
D O I
10.1016/j.amc.2016.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a semi-implicit finite difference method for the time dependent Poisson-Nernst-Planck system. Although the Poisson-Nernst-Planck system is a nonlinear system, the numerical method presented in this paper only needs to solve a linear system at each time step, which can be done very efficiently. The rigorous proof for the mass conservation and electric potential energy decay are shown. Moreover, mesh refinement analysis shows that the method is second order convergent in space and first order convergent in time. Finally we point out that our method can be easily extended to the case of multi-ions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 223
页数:10
相关论文
共 50 条
  • [1] A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson-Nernst-Planck System
    He, Dongdong
    Pan, Kejia
    Yue, Xiaoqiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 436 - 458
  • [2] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [3] A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations
    Hu, Jingwei
    Huang, Xiaodong
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 77 - 115
  • [4] A POSITIVITY-PRESERVING, ENERGY STABLE AND CONVERGENT NUMERICAL SCHEME FOR THE POISSON-NERNST-PLANCK SYSTEM
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2071 - 2106
  • [5] Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson-Nernst-Planck System
    Ling, Weiwei
    Liu, Benchao
    Guo, Qian
    SYMMETRY-BASEL, 2022, 14 (08):
  • [6] A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 363 - 376
  • [7] A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson–Nernst–Planck System
    Dongdong He
    Kejia Pan
    Xiaoqiang Yue
    Journal of Scientific Computing, 2019, 81 : 436 - 458
  • [8] An energy-preserving discretization for the Poisson-Nernst-Planck equations
    Flavell, Allen
    Kabre, Julienne
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 431 - 441
  • [9] A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck (PNP) system
    Dong, Lixiu
    He, Dongdong
    Qin, Yuzhe
    Zhang, Zhengru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [10] An unconditionally energy stable linear scheme for Poisson-Nernst-Planck equations
    Qiao, Tian
    Qiao, Zhonghua
    Sun, Shuyu
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 443