Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI

被引:92
作者
Chantry, Matthew [1 ]
Christensen, Hannah [1 ]
Dueben, Peter [2 ]
Palmer, Tim [1 ]
机构
[1] Univ Oxford, Atmospher Ocean & Planetary Phys, Oxford, England
[2] European Ctr Medium RangeWeather Forecasts, Reading, Berks, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2194期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
weather prediction; machine learning; climate modelling; NEURAL-NETWORKS;
D O I
10.1098/rsta.2020.0083
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In September 2019, a workshop was held to highlight the growing area of applying machine learning techniques to improve weather and climate prediction. In this introductory piece, we outline the motivations, opportunities and challenges ahead in this exciting avenue of research. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
引用
收藏
页数:8
相关论文
共 41 条
[1]  
Abadi M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
[2]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[3]   Prognostic Validation of a Neural Network Unified Physics Parameterization [J].
Brenowitz, N. D. ;
Bretherton, C. S. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (12) :6289-6298
[4]   Analog Forecasting of Extreme-Causing Weather Patterns Using Deep Learning [J].
Chattopadhyay, Ashesh ;
Nabizadeh, Ebrahim ;
Hassanzadeh, Pedram .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (02)
[5]  
Chevallier F, 1998, J APPL METEOROL, V37, P1385, DOI 10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO
[6]  
2
[7]  
Chollet F., 2015, Keras
[8]   Challenges and design choices for global weather and climate models based on machine learning [J].
Dueben, Peter D. ;
Bauer, Peter .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (10) :3999-4009
[9]   Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 Model [J].
Gagne, David John, II ;
Christensen, Hannah M. ;
Subramanian, Aneesh C. ;
Monahan, Adam H. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (03)
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672