Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries

被引:20
|
作者
Chen, Xiang [1 ]
Zhu, Ji-ping [1 ]
Ding, Yuan [1 ]
Zuo, Xiu-xiu [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
关键词
ELECTROCHEMICAL PERFORMANCE; HOLLOW SPHERES; AIR BATTERIES; STORAGE; ELECTRODES; NANOSHEETS; ZNCO2O4; ARRAYS; OXIDE; NANOSTRUCTURES;
D O I
10.1007/s10854-021-06395-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the binary metal oxides (BMOs) have become a hot spot with remarkable electrochemical performance for lithium-ion batteries. In this work, the CuCo2O4 nanoparticles were successfully synthesized by a facile scalable solvothermal post-calcination method with the assistance urea as organic ligands and N,N-dimethylformamide (DMF) as the solvent. The porous precursor played a vital role as a template to form the CuCo2O4 nanoparticles, greatly enhancing the electrochemical performance of final products. When used as anode materials for lithium-ion batteries, the CuCo2O4 nanoparticles exhibited remarkable reversible specific capacity (1106.8 mAh g(-1)) and coulombic efficiency (99.8%) at 0.5 C over 300 cycles, capacity retention reached 84.5%. This excellent performance can be attributed to the porous morphology of precursor and the uniform nanostructure of the products. The CuCo2O4 nanoparticles also displayed remarkable rate capability, even at the 2C of current density; the charge capacity of the CuCo2O4 nanoparticles is 799.8 mAh g(-1) with a coulombic efficiency of 98.4%. The excellent electrochemical performance makes the CuCo2O4 nanoparticles a aussichtsreich anode material for lithium-ion batteries.
引用
收藏
页码:18765 / 18776
页数:12
相关论文
共 50 条
  • [21] Ionothermal Synthesis of Cobalt Vanadate Nanoparticles As High-Performance Anode Materials for Lithium-Ion Batteries
    Zhao, Yu
    Guan, Ruxin
    Hou, Zhenjiang
    Li, Hongwei
    Li, Guixian
    Li, Shiyou
    Mao, Liping
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (06) : 3260 - 3275
  • [22] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Huang, Man-Xia
    Sun, Yan-Hui
    Guan, Dong-Cai
    Nan, Jun-Min
    Cai, Yue-Peng
    IONICS, 2019, 25 (12) : 5745 - 5757
  • [23] Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries
    Sun, Panling
    Zhang, Wuxing
    Hu, Xianluo
    Yuan, Lixia
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) : 3498 - 3504
  • [24] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Pan, Shugang
    Zhao, Xianmin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (22) : 26917 - 26928
  • [25] Synthesis and Electrochemical Performance of NiCo2S4 as Anode for Lithium-Ion Batteries
    Min, Feixia
    Ran, Yan
    Min, Zhiwen
    Teng, Fei
    Wang, Shiquan
    Wu, Huimin
    Feng, Chuanqi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5749 - 5755
  • [26] Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries
    Luo, Wei
    Hu, Xianluo
    Sun, Yongming
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) : 8916 - 8921
  • [27] CoNiO nanowire arrays as a high-performance anode material for lithium-ion batteries
    Yao, Jianyu
    Xiao, Peng
    Zhang, Yunhuai
    Zhan, Min
    Yang, Fei
    Meng, Xiaoqin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 366 - 371
  • [28] High Electrochemical Performance of Nanotube Structured ZnS as Anode Material for Lithium-Ion Batteries
    Zhang, Wen
    Zhang, Junfan
    Zhao, Yan
    Tan, Taizhe
    Yang, Tai
    MATERIALS, 2018, 11 (09)
  • [29] Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries
    Li, Haipeng
    Wei, Yaqiong
    Zhang, Yongguang
    Yin, Fuxing
    Zhang, Chengwei
    Wang, Gongkai
    Bakenov, Zhumabay
    IONICS, 2016, 22 (08) : 1387 - 1393
  • [30] Electrochemical performance of porous CaFe2O4 as a promising anode material for lithium-ion batteries
    Shaji, Nitheesha
    Santhoshkumar, P.
    Nanthagopal, Murugan
    Senthil, Chenrayan
    Lee, Chang Woo
    APPLIED SURFACE SCIENCE, 2019, 491 : 757 - 764