On internally corrected and symmetrized kernel estimators for nonparametric regression

被引:20
|
作者
Linton, Oliver B. [1 ]
Jacho-Chavez, David T. [2 ]
机构
[1] London Sch Econ, Dept Econ, London WC2A 2AE, England
[2] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
关键词
Multivariate regression; Smoothing matrix; Symmetry; INTEGRATION;
D O I
10.1007/s11749-009-0145-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the properties of a kernel-type multivariate regression estimator first proposed by Mack and Muller (Sankhya 51:59-72, 1989) in the context of univariate derivative estimation. Our proposed procedure, unlike theirs, assumes that bandwidths of the same order are used throughout; this gives more realistic asymptotics for the estimation of the function itself but makes the asymptotic distribution more complicated. We also propose a modification of this estimator that has a symmetric smoother matrix, which makes it admissible, unlike some other common regression estimators. We compare the performance of the estimators in a Monte Carlo experiment.
引用
收藏
页码:166 / 186
页数:21
相关论文
共 50 条
  • [1] On internally corrected and symmetrized kernel estimators for nonparametric regression
    Oliver B. Linton
    David T. Jacho-Chávez
    TEST, 2010, 19 : 166 - 186
  • [2] SYMMETRIZED KERNEL ESTIMATORS OF THE REGRESSION SLOPE
    BLYTH, S
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (02) : 167 - 172
  • [3] Weighted kernel estimators in nonparametric binomial regression
    Okumura, H
    Naito, K
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 39 - 62
  • [4] Universal Local Linear Kernel Estimators in Nonparametric Regression
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2022, 10 (15)
  • [5] ULTRASPHERICAL POLYNOMIAL, KERNEL AND HYBRID ESTIMATORS FOR NONPARAMETRIC REGRESSION
    AZARI, AS
    MACK, YP
    MULLER, HG
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 80 - 96
  • [6] Kernel regression estimators for nonparametric model calibration in survey sampling
    Cadigan N.G.
    Chen J.
    Journal of Statistical Theory and Practice, 2010, 4 (1) : 1 - 25
  • [7] On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model
    Ziegler, K
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 115 (01) : 123 - 144
  • [8] Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2024, 12 (12)
  • [9] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G.
    Mueller, M.
    Carroll, R. J.
    Statistics & Probability Letters, 37 (01):
  • [10] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G
    Muller, M
    Carroll, RJ
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 41 - 47