Quantum limits on optical phase estimation accuracy from classical rate-distortion theory

被引:0
作者
Nair, Ranjith [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
来源
ELEVENTH INTERNATIONAL CONFERENCE ON QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTATION (QCMC) | 2014年 / 1633卷
关键词
Phase estimation; Optical interferometry; Heisenberg limit; Standard quantum limit; Rate-distortion theory; ENHANCED METROLOGY;
D O I
10.1063/1.4903098
中图分类号
O59 [应用物理学];
学科分类号
摘要
The classical information-theoretic lower bound on the distortion of a random variable upon transmission through a noisy channel is applied to quantum-optical phase estimation. An approach for obtaining Bayesian lower bounds on the phase estimation accuracy is described that employs estimates of the classical capacity of the relevant quantum-optical channels. The Heisenberg limit for lossless phase estimation is derived for arbitrary probe state and prior distributions of the phase, and shot-noise scaling of the phase accuracy is established in the presence of nonzero loss for a parallel entanglement-assisted strategy with a single probe mode.
引用
收藏
页码:71 / 73
页数:3
相关论文
共 19 条
[1]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[2]  
[Anonymous], 2006, Elements of Information Theory
[3]  
[Anonymous], 2011, NATURE PHOTONICS, V5, P222
[4]   The elusive Heisenberg limit in quantum-enhanced metrology [J].
Demkowicz-Dobrzanski, Rafal ;
Kolodynski, Jan ;
Guta, Madalin .
NATURE COMMUNICATIONS, 2012, 3
[5]  
Escher BM, 2011, NAT PHYS, V7, P406, DOI [10.1038/NPHYS1958, 10.1038/nphys1958]
[6]   Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory [J].
Hall, Michael J. W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW X, 2012, 2 (04)
[7]   The Entropy Gain of Infinite-Dimensional Quantum Evolutions [J].
Holevo, A. S. .
DOKLADY MATHEMATICS, 2010, 82 (02) :730-731
[8]   Phase estimation without a priori phase knowledge in the presence of loss [J].
Kolodynski, Jan ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW A, 2010, 82 (05)
[9]  
Nair R., 2012, ARXIVORG12043761
[10]   Optimal Quantum States for Image Sensing in Loss [J].
Nair, Ranjith ;
Yen, Brent J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (19)