Closed-form Expressions of the Vector Gravity and Gravity Gradient Tensor Due to a Circular Disk

被引:3
作者
Rim, Hyoungrea [1 ]
机构
[1] Pusan Natl Univ, Dept Earth Sci Educ, 2 Busandaehak Ro,63 Beon Gil, Busan 46241, South Korea
来源
GEOPHYSICS AND GEOPHYSICAL EXPLORATION | 2021年 / 24卷 / 01期
关键词
gravity potential; vector gravity; gravity gradient tensor; circular disk; GRAVITATIONAL ATTRACTION;
D O I
10.7582/GGE.2021.24.1.001
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The closed-form expressions of the vector gravity and gravity gradient tensor due to a circular disk are derived. The gravity potential due to a circular disk with a constant density is defined for a cylindrical system. Then, the vector gravity is derived by differentiating the gravity potential with respect to cylindrical coordinates. The radial component of the vector gravity in the cylindrical system is converted into horizontal gravity components in the Cartesian system. Finally, the gravity gradient tensor due to a circular disk is obtained by differentiating the vector gravity with respect to the Cartesian coordinates.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 2012, MATH METHODS PHYS, DOI DOI 10.1016/C2009-0-30629-7
[2]  
Blakely R. I., 1996, POTENTIAL THEORY GRA, V2nd ed, DOI [10.10.1017/CBO9780511549816, DOI 10.1017/CBO9780511549816, 10.1017/CBO9780511549816]
[3]  
Blum V. J., 1945, GEOPHYSICS, V10, P368, DOI [10.1190/1.1437180, DOI 10.1190/1.1437180]
[4]  
Byrd PF., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, DOI [10.1007/978-3-642-65138-0, DOI 10.1007/978-3-642-65138-0]
[5]  
Carlson B. C., 1995, Numerical Algorithms, V10, P13, DOI 10.1007/BF02198293
[6]  
Carlson B. C., 1981, AMC T NS MATH MATH S, V7, P389, DOI [10.1145/355958.355970, DOI 10.1145/355958.355970]
[7]   Gravitational attraction of solids of revolution - Part 1: Vertical circular cylinder with radial variation of density [J].
Damiata, BN ;
Lee, TC .
JOURNAL OF APPLIED GEOPHYSICS, 2002, 50 (03) :333-349
[8]   ON CERTAIN INTEGRALS OF LIPSCHITZ-HANKEL TYPE INVOLVING PRODUCTS OF BESSEL FUNCTIONS [J].
EASON, G ;
NOBLE, B ;
SNEDDON, IN .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 247 (935) :529-551
[9]   THE GRAVITATIONAL-FIELD OF A DISK [J].
KROGH, FT ;
NG, EW ;
SNYDER, WV .
CELESTIAL MECHANICS, 1982, 26 (04) :395-405
[10]  
Nettleton L.L., 1942, Geophysics, V7, P293, DOI 10.1190/1.1445015