Development of stereo endoscope system with its innovative master interface for continuous surgical operation

被引:11
作者
Kim, Myungjoon [1 ]
Lee, Chiwon [2 ]
Hong, Nhayoung [1 ]
Kim, Yoon Jae [1 ]
Kim, Sungwan [3 ,4 ]
机构
[1] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 03080, South Korea
[2] Korea Electrotechnol Res Inst, Ansan 15588, South Korea
[3] Seoul Natl Univ, Inst Med & Biol Engn, Seoul 08826, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Biomed Engn, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
Three-dimensional (3D) endoscope system; Minimally invasive surgery (MIS); Improved novel master interface (iNMI); da Vinci research kit (dVRK); Hands-on-throttle-and-stick (HOTAS); LAPAROSCOPIC SURGERY; ROBOT SYSTEM; END;
D O I
10.1186/s12938-017-0376-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. Methods: The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. Results: The iNMIs operated for 317 min and moved in accordance with the surgeon's desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm(3), which exceeds the reference workspace of 549.5 cm(3). The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system's overall performance. Conclusions: The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems.
引用
收藏
页数:16
相关论文
共 33 条
[1]   Comparison of outcomes and cost for endometrial cancer staging via traditional laparotomy, standard laparoscopy and robotic techniques [J].
Bell, Maria C. ;
Torgerson, Jenny ;
Seshadri-Kreaden, Usha ;
Suttle, Allison Wierda ;
Hunt, Sharon .
GYNECOLOGIC ONCOLOGY, 2008, 111 (03) :407-411
[2]   Pupil Variation Applied to the Eye Tracking Control of an Endoscopic Manipulator [J].
Cao, Yang ;
Miura, Satoshi ;
Kobayashi, Yo ;
Kawamura, Kazuya ;
Sugano, Shigeki ;
Fujie, Masakatsu G. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (01) :531-538
[3]  
Choi Won-Kyu, 2014, Obstet Gynecol Sci, V57, P379, DOI 10.5468/ogs.2014.57.5.379
[4]   Advantages and limits of robot-assisted laparoscopic surgery - Preliminary experience [J].
Corcione, F ;
Esposito, C ;
Cuccurullo, D ;
Settembre, A ;
Miranda, N ;
Amato, F ;
Pirozzi, F ;
Caiazzo, P .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2005, 19 (01) :117-119
[5]   Experienced laparoscopic surgeons are automated to the "fulcrum effect": An ergonomic demonstration [J].
Crothers, IR ;
Gallagher, AG ;
McClure, N ;
James, DTD ;
McGuigan, J .
ENDOSCOPY, 1999, 31 (05) :365-369
[6]  
Dongchun Liu, 2011, Proceedings of the 2011 International Symposium on Information Technology in Medicine and Education (ITME 2011), P616, DOI 10.1109/ITiME.2011.6130913
[7]  
Gómez JB, 2009, IEEE INT CONF ROBOT, P4289
[8]   Simulation and control for telerobots in space medicine [J].
Haidegger, Tamas ;
Kovacs, Levente ;
Precup, Radu-Emil ;
Benyo, Balazs ;
Benyo, Zoltan ;
Preitl, Stefan .
ACTA ASTRONAUTICA, 2012, 81 :390-402
[9]   Raven-II: An Open Platform for Surgical Robotics Research [J].
Hannaford, Blake ;
Rosen, Jacob ;
Friedman, Diana W. ;
King, Hawkeye ;
Roan, Phillip ;
Cheng, Lei ;
Glozman, Daniel ;
Ma, Ji ;
Kosari, Sina Nia ;
White, Lee .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (04) :954-959
[10]   The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery [J].
Heemskerk, Jeroen ;
Bouvy, Nicole D. ;
Baeten, Cor G. M. I. .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2014, 28 (04) :1388-1398