A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries

被引:30
|
作者
Yu, Lubing [1 ]
Liu, Jian [1 ,2 ,3 ]
He, Shuaishuai [1 ]
Huang, Cliaofan [1 ]
Gan, Lihui [1 ,2 ,3 ]
Gong, Zhengliang [1 ]
Long, Minnan [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Xicunen Key Lab Clean & High Valued Applicat Biom, Xiamen 361102, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Engn & Res Ctr Clean & High Valued Technol, Xiamen 361102, Fujian, Peoples R China
关键词
3D polymer binder; Carboxymethylcellulose; Lithium-ion batteries; Silicon anode; WATER-SOLUBLE BINDER; CARBON SHELL; COMPOSITE; ALGINATE; POLYACRYLAMIDE; CAPABILITY; CELLULOSE;
D O I
10.1016/j.jpcs.2019.109113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For high-capacity silicon (Si) anodes, the design of new binder is a feasible way to overcome the rapid capacity decay attributed to the large volume change of silicon (Si) anode in the repeated charging/discharging process. Hire a newly designed binder with 3D structure was developed using CMC as the backbone, and acrylamide (AM), acrylic acid (AA) as the branch. The molecular structure was characterized by Fourier transform infrared (FTIR), and ethanol washing was applied for getting rid of unreacted monomers. The multifunctional binder with 3D structure and rich polar groups was prepared by cross-linking grafting. Polyacrylamide provides a strong adhesion and contributes to the formation of the solid electrolyte intermediate phase (SEI) layers on the surface of electrodes. The results show that CMC and polyacrylic acid with carboxyl groups not only strengthened the bonding force between the current collectors and the silicon nanoparticles (SiNPs), also improved the linkage among SiNPs. Therefore, the loading weight of commercial Si was about 0.75 mg cm(-2), even after 150 deep cycles, and a high capacity of 1210.7 mAh g(-1) was resulted in the Si anode. The prepared novel high-performance binder shows a potential application on the silicon anode in lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries
    Hu, Shanming
    Cai, Zhixiang
    Huang, Tao
    Zhang, Hongbin
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4311 - 4317
  • [2] Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
    Song, Jiangxuan
    Zhou, Mingjiong
    Yi, Ran
    Xu, Terrence
    Gordin, Mikhail L.
    Tang, Duihai
    Yu, Zhaoxin
    Regula, Michael
    Wang, Donghai
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) : 5904 - 5910
  • [3] A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries
    Hu, Xianchao
    Liang, Kang
    Li, Jianbin
    Ren, Yurong
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [4] Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries
    Li, Zikai
    Guo, Anru
    Liu, Dong
    BATTERIES-BASEL, 2022, 8 (06):
  • [5] Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Zeng, Wenwu
    Wang, Lei
    Peng, Xiang
    Liu, Tiefeng
    Jiang, Youyu
    Qin, Fei
    Hu, Lin
    Chu, Paul K.
    Huo, Kaifu
    Zhou, Yinhua
    ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [6] 3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a High-Performance Anode for Lithium-Ion Batteries
    Zhang, Chengwei
    Zhang, Zheng
    Yin, Fuxing
    Zhang, Yongguang
    Mentbayeva, Almagul
    Babaa, Moulay-Rachid
    Molkenova, Anara
    Bakenov, Zhumabay
    CHEMELECTROCHEM, 2017, 4 (09): : 2359 - 2365
  • [7] 3D Covalent Polyoxovanadate-Organic Framework as Anode for High-Performance Lithium-Ion Batteries
    Zhao, Yingnan
    Li, Wenliang
    Li, Yingqi
    Qiu, Tianyu
    Mu, Xin
    Ma, Yuzhu
    Zhao, Yan
    Zhang, Jingping
    Zhang, Jiangwei
    Li, Yangguang
    Tan, Huaqiao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (50)
  • [8] Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
    Zhou, Xiaosi
    Cao, An-Min
    Wan, Li-Jun
    Guo, Yu-Guo
    NANO RESEARCH, 2012, 5 (12) : 845 - 853
  • [9] Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries
    Li, Juanjuan
    Zhang, Guangzhao
    Yang, Yu
    Yao, Dahua
    Lei, Zhiwen
    Li, Shuai
    Deng, Yonghong
    Wang, Chaoyang
    JOURNAL OF POWER SOURCES, 2018, 406 : 102 - 109
  • [10] Novel conductive binder for high-performance silicon anodes in lithium ion batteries
    Liu, Dong
    Zhao, Yan
    Tan, Rui
    Tian, Lei-Lei
    Liu, Yidong
    Chen, Haibiao
    Pan, Feng
    NANO ENERGY, 2017, 36 : 206 - 212