Synthetic metabolism: metabolic engineering meets enzyme design

被引:165
作者
Erb, Tobias J. [1 ,2 ]
Jones, Patrik R. [3 ]
Bar-Even, Arren [4 ]
机构
[1] Max Planck Inst Terr Microbiol, Biochem & Synthet Biol Microbial Metab Grp, Karl von Frisch Str 10, D-35043 Marburg, Germany
[2] LOEWE Res Ctr Synthet Microbiol SYNMIKRO, Karl von Frisch Str 10, D-35043 Marburg, Germany
[3] Imperial Coll London, Dept Life Sci, Sir Alexander Fleming Bldg, London SW7 2AZ, England
[4] Max Planck Inst Mol Plant Physiol, Syst & Synthet Metab Grp, Muhlenberg 1, D-14476 Potsdam, Germany
基金
欧洲研究理事会;
关键词
ESCHERICHIA-COLI; BIOSYNTHESIS; PATHWAYS; PHOTORESPIRATION; DECARBOXYLASE; ASSIMILATION; GLYCOLYSIS; EVOLUTION; ENABLES; DAMAGE;
D O I
10.1016/j.cbpa.2016.12.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a valueadded compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 63 条
[1]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[2]   Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways [J].
Bar-Even, Arren .
BIOCHEMISTRY, 2016, 55 (28) :3851-3863
[3]  
Bar-Even A, 2012, NAT CHEM BIOL, V8, P509, DOI [10.1038/nchembio.971, 10.1038/NCHEMBIO.971]
[4]   Design and analysis of synthetic carbon fixation pathways [J].
Bar-Even, Arren ;
Noor, Elad ;
Lewis, Nathan E. ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8889-8894
[5]   Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement [J].
Betti, Marco ;
Bauwe, Hermann ;
Busch, Florian A. ;
Fernie, Alisdair R. ;
Keech, Olivier ;
Levey, Myles ;
Ort, Donald R. ;
Parry, Martin A. J. ;
Sage, Rowan ;
Timm, Stefan ;
Walker, Berkley ;
Weber, Andreas P. M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) :2977-2988
[6]   Bioretrosynthetic construction of a didanosine biosynthetic pathway [J].
Birmingham, William R. ;
Starbird, Chrystal A. ;
Panosian, Timothy D. ;
Nannemann, David P. ;
Iverson, T. M. ;
Bachmann, Brian O. .
NATURE CHEMICAL BIOLOGY, 2014, 10 (05) :392-U111
[7]   Synthetic non-oxidative glycolysis enables complete carbon conservation [J].
Bogorad, Igor W. ;
Lin, Tzu-Shyang ;
Liao, James C. .
NATURE, 2013, 502 (7473) :693-+
[8]   Engineering Bacterial Microcompartment Shells: Chimeric Shell Proteins and Chimeric Carboxysome Shells [J].
Cai, Fei ;
Sutter, Markus ;
Bernstein, Susan L. ;
Kinney, James N. ;
Kerfeld, Cheryl A. .
ACS SYNTHETIC BIOLOGY, 2015, 4 (04) :444-453
[9]   Retropath: Automated Pipeline for Embedded Metabolic Circuits [J].
Carbonell, Pablo ;
Parutto, Pierre ;
Baudier, Claire ;
Junot, Christophe ;
Faulon, Jean-Loup .
ACS SYNTHETIC BIOLOGY, 2014, 3 (08) :565-577
[10]   Enzyme clustering accelerates processing of intermediates through metabolic channeling [J].
Castellana, Michele ;
Wilson, Maxwell Z. ;
Xu, Yifan ;
Joshi, Preeti ;
Cristea, Ileana M. ;
Rabinowitz, Joshua D. ;
Gitai, Zemer ;
Wingreen, Ned S. .
NATURE BIOTECHNOLOGY, 2014, 32 (10) :1011-+