One-step entanglements generation on distant superconducting resonators in the dispersive regime

被引:1
作者
Hua, Ming [1 ,2 ]
Tao, Ming-Jie [2 ]
Alzahrani, Faris [3 ]
Hobiny, Aatef [3 ]
Wei, Hai-Rui [4 ]
Deng, Fu-Guo [2 ,3 ]
机构
[1] Tianjin Polytech Univ, Dept Appl Phys, Sch Sci, Tianjin 300387, Peoples R China
[2] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Fac Sci, NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Bell state; Entanglement; Superconducting resonator; Superconducting quantum interferometer device; QUANTUM-DOT; OPTICAL MICROCAVITIES; PHOTONS; QUBITS; STATES; GATE;
D O I
10.1007/s11128-018-2106-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a scalable quantum-bus-based device for generating the entanglement on photons in distant superconducting resonators (SRs). The device is composed of some one-dimensional (1D) SRs r(j) coupled to the quantum bus (another common resonator R) in its different positions assisted by superconducting quantum interferometer devices which are used to tune the coupling strengths between r(j) and R. By using the technique for catching and releasing a photon state in a 1D SR, it can work as an entanglement generator or a node in quantum communication. To demonstrate the performance of this device, we propose a one-step scheme to generate high-fidelity Bell state on photons in two distant SRs. It works in the dispersive regime of r(j) and R, which enables us to extend it to generate high-fidelity multi-Bell states on different resonator pairs simultaneously.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Nonlinear Optics Quantum Computing with Circuit QED [J].
Adhikari, Prabin ;
Hafezi, Mohammad ;
Taylor, J. M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[2]   Resonance Fluorescence of a Single Artificial Atom [J].
Astafiev, O. ;
Zagoskin, A. M. ;
Abdumalikov, A. A., Jr. ;
Pashkin, Yu. A. ;
Yamamoto, T. ;
Inomata, K. ;
Nakamura, Y. ;
Tsai, J. S. .
SCIENCE, 2010, 327 (5967) :840-843
[3]   CNOT and Bell-state analysis in the weak-coupling cavity QED regime [J].
Bonato, Cristian ;
Haupt, Florian ;
Oemrawsingh, Sumant S. R. ;
Gudat, Jan ;
Ding, Dapeng ;
van Exter, Martin P. ;
Bouwmeester, Dirk .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[4]   Natural and artificial atoms for quantum computation [J].
Buluta, Iulia ;
Ashhab, Sahel ;
Nori, Franco .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (10)
[5]   Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator [J].
Cai, Kang ;
Wang, RuiXia ;
Yin, ZhangQi ;
Long, GuiLu .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2017, 60 (07)
[6]   Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system [J].
Cao, Cong ;
Duan, Yu-Wen ;
Chen, Xi ;
Zhang, Ru ;
Wang, Tie-Jun ;
Wang, Chuan .
OPTICS EXPRESS, 2017, 25 (15) :16931-16946
[7]   Superconducting Resonators as Beam Splitters for Linear-Optics Quantum Computation [J].
Chirolli, Luca ;
Burkard, Guido ;
Kumar, Shwetank ;
DiVincenzo, David P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1
[10]   Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block [J].
Deng, FG ;
Long, GL ;
Liu, XS .
PHYSICAL REVIEW A, 2003, 68 (04) :6