Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation

被引:40
作者
Hassan, Md Mehedi [1 ]
Kabir, Md Anowar [1 ]
Hossain, Md Nadim [1 ]
Biswas, Bipul [1 ]
Paul, Bikash Kumar [1 ,2 ,3 ]
Ahmed, Kawsar [1 ,2 ]
机构
[1] Mawlana Bhashani Sci & Technol Univ, Dept Informat & Commun Technol, Santosh 1902, Tangail, Bangladesh
[2] Mawlana Bhashani Sci & Technol Univ, Grp Biophotomatix, Santosh 1902, Tangail, Bangladesh
[3] Daffodil Int Univ, Dept Software Engn, Dhaka 1207, Bangladesh
关键词
Orbital angular momentum (OAM); Photonic crystal fiber (PCF); Mode division multiplexing (MDM); Space division multiplexing (SDM); MICRO-STRUCTURED FIBER; GUIDING CHARACTERISTICS; GENERATION; LIGHT;
D O I
10.1007/s11082-019-2125-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel design, photonic crystal fiber (PCF) has been reported to support more orbital angular momentum (OAM) modes for the first time. The cladding region formed by employing the three-layer chain shaped air cavities. The OAM properties and parameters are calculated by optimizing the design of the PCF. The simulation results can support 26 OAM modes with a wider bandwidth (750 nm). The confinement loss of the most OAM modes is below average 10(-7) dB/m and the nonlinear coefficient is less than 4 W-1/km. Some OAM modes with comparatively flat dispersion variation (such as 3.8684 ps/km-nm) for HE2,1 are noticed from the design. Moreover, fundamental optical characteristics have been rigorously computed by utilizing the finite element method. Now, it can be anticipated that, these excellent optical characteristics confirm the introduced design as a prominent candidate for the OAM transmission and other relevant areas of optical communications.
引用
收藏
页数:14
相关论文
共 44 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Spiral photonic crystal fiber structure for supporting orbital angular momentum modes [J].
Ashok, Nandam ;
Shin, Woojin .
OPTIK, 2018, 169 :361-367
[3]   Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission [J].
Bai, Xiuli ;
Chen, Heming ;
Yang, Honghong .
OPTIK, 2018, 158 :1266-1274
[4]   Numerical evaluation of the performance of different materials in nonlinear optical applications [J].
Biswas, Bipul ;
Ahmed, Kawsar ;
Paul, Bikash Kumar ;
Khalek, Md. Abdul ;
Uddin, Muhammad Shahin .
RESULTS IN PHYSICS, 2019, 13
[5]   Design, fabrication and validation of an OAM fiber supporting 36 states [J].
Brunet, Charles ;
Vaity, Pravin ;
Messaddeq, Younes ;
LaRochelle, Sophie ;
Rusch, Leslie A. .
OPTICS EXPRESS, 2014, 22 (21) :26117-26127
[6]   A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk [J].
Chen, Cheng ;
Zhou, Guiyao ;
Zhou, Gai ;
Xu, Minnan ;
Hou, Zhiyun ;
Xia, Changming ;
Yuan, Jinhui .
OPTICS COMMUNICATIONS, 2016, 368 :27-33
[7]   Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings [J].
Fang, Liang ;
Wang, Jian .
OPTICS LETTERS, 2015, 40 (17) :4010-4013
[8]   Controlled generation of different orbital angular momentum states in a hybrid optical fiber [J].
Heng, Xiaobo ;
Gan, Jiulin ;
Zhang, Zhishen ;
Qian, Qi ;
Xu, Shanhui ;
Yang, Zhongmin .
OPTICS COMMUNICATIONS, 2017, 402 :668-671
[9]   Photonic crystal fiber for supporting 26 orbital angular momentum modes [J].
Hu, Zi-Ang ;
Huang, Yu-Qi ;
Luo, Ai-Ping ;
Cui, Hu ;
Luo, Zhi-Chao ;
Xu, Wen-Cheng .
OPTICS EXPRESS, 2016, 24 (15) :17285-17291
[10]   100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J].
Huang, Hao ;
Xie, Guodong ;
Yan, Yan ;
Ahmed, Nisar ;
Ren, Yongxiong ;
Yue, Yang ;
Rogawski, Dvora ;
Willner, Moshe J. ;
Erkmen, Baris I. ;
Birnbaum, Kevin M. ;
Dolinar, Samuel J. ;
Lavery, Martin P. J. ;
Padgett, Miles J. ;
Tur, Moshe ;
Willner, Alan E. .
OPTICS LETTERS, 2014, 39 (02) :197-200