Efficient algorithms for ranking with SVMs

被引:177
作者
Chapelle, O. [1 ]
Keerthi, S. S. [1 ]
机构
[1] Yahoo Res, Santa Clara, CA USA
来源
INFORMATION RETRIEVAL | 2010年 / 13卷 / 03期
关键词
Ranking; Support vector machines; AUC optimization;
D O I
10.1007/s10791-009-9109-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RankSVM (Herbrich et al. in Advances in large margin classifiers. MIT Press, Cambridge, MA, 2000; Joachims in Proceedings of the ACM conference on knowledge discovery and data mining (KDD), 2002) is a pairwise method for designing ranking models. SVMLight is the only publicly available software for RankSVM. It is slow and, due to incomplete training with it, previous evaluations show RankSVM to have inferior ranking performance. We propose new methods based on primal Newton method to speed up RankSVM training and show that they are 5 orders of magnitude faster than SVMLight. Evaluation on the Letor benchmark datasets after complete training using such methods shows that the performance of RankSVM is excellent.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 28 条
[1]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[2]  
[Anonymous], ADV NEURAL INFORM PR
[3]  
[Anonymous], SIGIR
[4]  
[Anonymous], 2006, P ACMSIGKDD INT C KN
[5]  
[Anonymous], 2003, Journal of machine learning research
[6]  
[Anonymous], 1994, TEMPLATES SOLUTION L, DOI DOI 10.1137/1.9781611971538
[7]  
[Anonymous], 2000, ADV LARGE MARGIN CLA
[8]  
[Anonymous], 2008, Advances in Neural Information Processing Systems, DOI DOI 10.7751/mitpress/8996.003.0015
[9]  
[Anonymous], 2005, P INT C MACH LEARN
[10]  
[Anonymous], P INT C MACH LEARN