Atomic Layer Deposition of Tin Monosulfide Using Vapor from Liquid Bis(N,N′-diisopropylformamidinato)tin(II) and H2S

被引:16
作者
Kim, Sang Bok [1 ,2 ]
Zhao, Xizhu [1 ,3 ]
Davis, Luke M. [1 ,4 ]
Jayaraman, Ashwin [1 ,5 ]
Yang, Chuanxi [1 ,6 ]
Gordon, Roy G. [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Seoul Natl Univ, Ctr Educ Res, 1 Gwanak Ro, Seoul 08826, South Korea
[3] LAM Res, 4650 Cushing Pkwy, Fremont, CA 94538 USA
[4] Tufts Univ, Dept Chem, 62 Talbot Ave, Medford, MA 02155 USA
[5] LAM Res, 11361 SW Leveton Dr, Tualatin, OR 97062 USA
[6] Appl Mat Inc, 3050 Bowers Ave, Santa Clara, CA 95054 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; tin monosulfide; quartz crystal microbalance; growth per cycle; amidinate; surface reaction; solar cell; THIN-FILMS; AMIDINATE; GROWTH; SULFIDE; PRECURSORS; DEFECTS; SNS2;
D O I
10.1021/acsami.9b16933
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The oxide and sulfide of divalent tin show considerable promise for sustainable thin-film optoelectronics, as transparent conducting and light absorbing p-type layers, respectively. Chemical vapor deposition (CVD) and atomic layer deposition (ALD) provide attractive routes to these layers. The literature on volatile tin(II) compounds used as CVD or ALD precursors shows that new compounds can provide different growth rates, film morphologies, preferred crystallographic orientations, and other material properties. We report here the synthesis and characterization of a new liquid tin(II) precursor, bis(N,N'-diisopropylformamidinato)tin(II) (1), which is effective in ALD of SnS in combination with H2S between 65 and 180 degrees C. Like other highly reactive tin(II) precursors, the growth per cycle linearly decreases from 0.82 angstrom/cycle at 65 degrees C to 0.4 angstrom/cycle at 180 degrees C. This is obviously different from the case of previously reported SnS ALD using bis(2,4-pentanedionato)tin(II), Sn(acac)(2), and H2S; films grow at 0.22-0.24 angstrom/cycle almost independent of the substrate temperature (125-225 degrees C, J. Phys. Chem. C 2010, 114, 17597). Quartz crystal microbalance (QCM) experiments for SnS ALD using 1 at 80, 120, and 160 degrees C were carried out to study the linear decrease of the growth per cycle with increasing substrate temperature. On the basis of these QCM studies, although the mechanism of chemisorption-loss of one ligand or two-can be manipulated by changing the exposure of 1, the purging time, or the temperature, only the temperature changes the growth per cycle. We therefore attribute the decreasing growth per cycle with increasing temperature to a decreasing surface thiol density. Photovoltaic devices prepared from 1-derived SnS have a performance similar to those of the best devices prepared from other precursors, and the device yield and replicability of J-V properties are substantially increased by using 1.
引用
收藏
页码:45892 / 45902
页数:11
相关论文
共 43 条
[1]   Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals [J].
Ahn, Ji-Hoon ;
Lee, Myoung-Jae ;
Heo, Hoseok ;
Sung, Ji Ho ;
Kim, Kyungwook ;
Hwang, Hyein ;
Jo, Moon-Ho .
NANO LETTERS, 2015, 15 (06) :3703-3708
[2]   Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures [J].
Baek, In-Hwan ;
Pyeon, Jung Joon ;
Song, Young Geun ;
Chung, Taek-Mo ;
Kim, Hae-Ryoung ;
Baek, Seung-Hyub ;
Kim, Jin-Sang ;
Kang, Chong-Yun ;
Choi, Ji-Won ;
Hwang, Cheol Seong ;
Han, Jeong Hwan ;
Kim, Seong Keun .
CHEMISTRY OF MATERIALS, 2017, 29 (19) :8100-8110
[3]   Atomic layer deposition of ZnS via in situ production of H2S [J].
Bakke, J. R. ;
King, J. S. ;
Jung, H. J. ;
Sinclair, R. ;
Bent, S. F. .
THIN SOLID FILMS, 2010, 518 (19) :5400-5408
[4]   Atomic Layer Deposition of CdS Films [J].
Bakke, Jonathan R. ;
Jung, Hee Joon ;
Tanskanen, Jukka T. ;
Sinclair, Robert ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2010, 22 (16) :4669-4678
[5]   OXIDATIVE ADDITION-REACTIONS OF SOME ORGANOTIN(II) AND ORGANIC TIN(II) COMPOUNDS [1] [J].
BOS, KD ;
BULTEN, EJ ;
NOLTES, JG .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1974, 67 (01) :C13-C15
[6]   Growth of multiple WS2/SnS layered semiconductor heterojunctions [J].
Browning, Robert ;
Plachinda, Paul ;
Padigi, Prasanna ;
Solanki, Raj ;
Rouvimov, Sergei .
NANOSCALE, 2016, 8 (04) :2143-2148
[7]   Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst [J].
Burton, Lee A. ;
Whittles, Thomas J. ;
Hesp, David ;
Linhart, Wojciech M. ;
Skelton, Jonathan M. ;
Hou, Bo ;
Webster, Richard F. ;
O'Dowd, Graeme ;
Reece, Christian ;
Cherns, David ;
Fermin, David J. ;
Veal, Tim D. ;
Dhanak, Vin R. ;
Walsh, Aron .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) :1312-1318
[8]   Record Mobility in Transparent p-Type Tin Monoxide Films and Devices by Phase Engineering [J].
Caraveo-Frescas, Jesus A. ;
Nayak, Pradipta K. ;
Al-Jawhari, Hala A. ;
Granato, Danilo B. ;
Schwingenschloegl, Udo ;
Alshareeft, Husam N. .
ACS NANO, 2013, 7 (06) :5160-5167
[9]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[10]   Atomic Layer Deposition of Metal Sulfide Materials [J].
Dasgupta, Neil P. ;
Meng, Xiangbo ;
Elam, Jeffrey W. ;
Martinson, Alex B. F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (02) :341-348