Fuzzy Sliding Mode Control for Fractional-Order Unified Chaotic System

被引:0
作者
Song, Xiaona [1 ]
Song, Shuai [2 ]
机构
[1] Luoyang Optoelect Technol Dev Ctr, Luoyang, Henan Province, Peoples R China
[2] Henan Univ Sci & Technol, Informat Engn Coll, Luoyang, Henan Province, Peoples R China
来源
2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA) | 2016年
关键词
Fractional-order unified chaotic systems; T-S fuzzy model; Fuzzy control; Sliding mode control; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the design problem of fuzzy sliding mode controller for fractional-order (FO) unified chaotic systems. Firstly, in terms of the T-S fuzzy modeling theory, we model the FO unified chaotic systems into T-S fuzzy systems; then with the application of sliding mode control theory, fuzzy sliding mode controller design method is discussed in this paper. The fuzzy sliding mode controller designed here guarantees the stability of the FO unified chaotic systems. Three numerical simulation examples are given to illustrate the effectiveness of the design approach.
引用
收藏
页码:1090 / 1095
页数:6
相关论文
共 16 条
  • [1] Synchronization of fractional order chaotic systems using active control method
    Agrawal, S. K.
    Srivastava, M.
    Das, S.
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 737 - 752
  • [2] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
    Andrew, Leung Y. T.
    Li Xian-Feng
    Chu Yan-Dong
    Zhang Hui
    [J]. CHINESE PHYSICS B, 2015, 24 (10)
  • [3] FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES
    BAGLEY, RL
    CALICO, RA
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) : 304 - 311
  • [4] Bouzeriba A., 2015, INT J MACHINE LEARNI, P1
  • [5] Control of a class of fractional-order chaotic systems via sliding mode
    Chen, Di-yi
    Liu, Yu-xiao
    Ma, Xiao-yi
    Zhang, Run-fan
    [J]. NONLINEAR DYNAMICS, 2012, 67 (01) : 893 - 901
  • [6] On fractional calculus and fractional multipoles in electromagnetism
    Engheta, N
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) : 554 - 566
  • [7] Terminal sliding mode control for cyber physical system based on filtering backstepping
    Li F.
    Hu J.-B.
    Zheng L.
    Wang J.-H.
    [J]. International Journal of Automation and Computing, 2015, 12 (5) : 497 - 502
  • [8] Second-order sliding mode approaches for the control of a class of underactuated systems
    Mahjoub S.
    Mnif F.
    Derbel N.
    [J]. International Journal of Automation and Computing, 2015, 12 (02) : 134 - 141
  • [9] Monje CA, 2010, ADV IND CONTROL, P3, DOI 10.1007/978-1-84996-335-0
  • [10] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746