Dynamics of the solution of Bratu's equation

被引:18
作者
Caglar, Hikmet [2 ]
Caglar, Nazan [3 ]
Ozer, Mehmet [4 ]
Valaristos, Antonios [1 ]
Miliou, Amalia N. [1 ]
Anagnostopoulos, Antonios N. [5 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, GR-54124 Thessaloniki, Greece
[2] Istanbul Kultur Univ, Dept Math & Comp, TR-34156 Istanbul, Turkey
[3] Istanbul Kultur Univ, Dept Business Adm, TR-34156 Istanbul, Turkey
[4] Istanbul Kultur Univ, Dept Phys, TR-34156 Istanbul, Turkey
[5] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
关键词
Bratu's equations; Power spectra; Cobweb diagrams; Lyapunov exponents; Chaos;
D O I
10.1016/j.na.2008.11.091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present report we examine the dynamics exhibited by the solution of Bratu's equation. It represents a one-dimensional map with control parameter theta. For certain values of the parameter theta it exhibits successive bifurcations and shows chaotic regimes. This behaviour was confirmed by calculating the corresponding Lyapunov exponent, power spectra and cobweb diagrams, indicating similarities with other well-known one-dimensional maps. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E672 / E678
页数:7
相关论文
共 14 条
[1]  
Boyd J. P., 1986, Journal of Scientific Computing, V1, P183, DOI 10.1007/BF01061392
[2]   Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation [J].
Boyd, JP .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :189-200
[3]   Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :380-398
[4]  
Buckmire R., APPL MICKENS FINITE, DOI [10.1002/num.10093, DOI 10.1002/NUM.10093]
[5]  
Davies H.T., 1962, INTRO NONLINEAR DIFF
[6]  
Frank-Kamenetskii D.A, 1955, DIFFUSION HEAT EXCHA
[7]  
Hassan Abel-Halim., 2007, International Journal of Contemporary Mathematical Sciences, V2, P1493
[8]   Some asymptotic methods for strongly nonlinear equations [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (10) :1141-1199
[9]   An analytic approach to solve multiple solutions of a strongly nonlinear problem [J].
Li, SC ;
Liao, SJ .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) :854-865
[10]   A general approach to obtain series solutions of nonlinear differential equations [J].
Liao, S. ;
Tan, Y. .
STUDIES IN APPLIED MATHEMATICS, 2007, 119 (04) :297-354