Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation

被引:199
作者
Lin, Q
Tobiska, L
Zhou, A
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[2] Univ Magdeburg, Inst Anal & Numer, D-39016 Magdeburg, Germany
基金
中国国家自然科学基金;
关键词
non-conforming finite elements; superconvergence; postprocessing; extrapolation;
D O I
10.1093/imanum/drh008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that on uniform meshes the piecewise linear conforming finite element solution of the Poisson equation approximates the interpolant to a higher order than the solution itself. In this paper, this type of superclose property is studied for the canonical interpolant defined by the nodal functionals of several non-conforming finite elements of lowest order. By giving explicit examples we show that some non-conforming finite elements do not admit the superclose property. In particular, we discuss two non-conforming finite elements which satisfy the superclose property. Moreover, applying a postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that an extrapolation technique leads to a further improvement of the accuracy of the finite element solution.
引用
收藏
页码:160 / 181
页数:22
相关论文
共 19 条
[1]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[2]  
BRANDTS J, 2001, MATH SCI APPL GAKUTO, V15, P22
[3]   EXTRAPOLATION, COMBINATION, AND SPARSE GRID TECHNIQUES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BUNGARTZ, H ;
GRIEBEL, M ;
RUDE, U .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :243-252
[4]   A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations [J].
Cai, ZQ ;
Douglas, J ;
Ye, X .
CALCOLO, 1999, 36 (04) :215-232
[5]   SUPERCONVERGENCE ANALYSIS AND ERROR EXPANSION FOR THE WILSON NONCONFORMING FINITE-ELEMENT [J].
CHEN, HS ;
LI, B .
NUMERISCHE MATHEMATIK, 1994, 69 (02) :125-140
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]  
DEHAN H, 1984, J COMPUT MATH, V2, P223
[8]   Analysis of a class of nonconforming finite elements for crystalline microstructures [J].
Kloucek, P ;
Li, B ;
Luskin, M .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :1111-1135
[9]  
LIN Q, 2002, RECENT PROGR COMPUTA, P269
[10]  
Lin Q., 1996, HIGH EFFICIENT FINIT