On the triple tensor product of nilpotent Lie algebras

被引:0
作者
Shamsaki, Afsaneh [1 ]
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; nilpotent Lie algebra; capable Lie algebra; triple tensor product; SCHUR MULTIPLIER; DIMENSION;
D O I
10.1080/03081087.2021.1932711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give the explicit structure of circle times H-3 and lambda H-3 where H is a generalized Heisenberg Lie algebra of rank at most 2. Moreover, for a non-abelian nilpotent Lie algebra L, we obtain an upper bound for the dimension of circle times L-3.
引用
收藏
页码:5879 / 5887
页数:9
相关论文
共 13 条
[1]   On covers of Lie algebras [J].
Batten, P ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4301-4317
[2]   On characterizing nilpotent Lie algebras by their multipliers [J].
Batten, P ;
Moneyhun, K ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4319-4330
[3]   Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2 [J].
de Graaf, Willem A. .
JOURNAL OF ALGEBRA, 2007, 309 (02) :640-653
[4]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[5]   Certain functors of nilpotent Lie algebras with the derived subalgebra of dimension two [J].
Johari, Farangis ;
Niroomand, Peyman .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
[6]   Capability and Schur multiplier of a pair of Lie algebras [J].
Johari, Farangis ;
Parvizi, Mohsen ;
Niroomand, Peyman .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :184-196
[7]  
Moneyhun K., 1994, Algebras Groups Geom., V11, P9
[8]   Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field [J].
Niroomand, Peyman ;
Johari, Farangis ;
Parvizi, Mohsen .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) :542-554
[9]   Some criteria for detecting capable Lie algebras [J].
Niroomand, Peyman ;
Parvizi, Mohsen ;
Russo, Francesco G. .
JOURNAL OF ALGEBRA, 2013, 384 :36-44
[10]   SOME PROPERTIES ON THE TENSOR SQUARE OF LIE ALGEBRAS [J].
Niroomand, Peyman .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (05)