ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS

被引:72
作者
Kukavica, Igor [1 ]
Masmoudi, Nader [2 ]
Vicol, Vlad [3 ]
Wong, Tak Kwong [4 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Euler equations; inviscid limit; boundary layer; Prandtl equations; hydrostatic balance; ZERO-VISCOSITY LIMIT; BOUNDARY-LAYER EQUATIONS; NAVIER-STOKES EQUATION; INVISCID LIMIT; VANISHING VISCOSITY; ANALYTIC SOLUTIONS; HALF-SPACE; PRIMITIVE EQUATIONS; ILL-POSEDNESS; EXISTENCE;
D O I
10.1137/140956440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find a new class of data for which the Prandtl boundary layer equations and the hydrostatic Euler equations are locally in time well-posed. In the case of the Prandtl equations, if the initial datum u(0) is monotone on a number of intervals (on some strictly increasing, on some strictly decreasing) and analytic on the complement of these intervals, we show that the local existence and uniqueness hold. The same result is true for the hydrostatic Euler equations if we assume these conditions for the initial vorticity omega(0) = partial derivative(y)u(0).
引用
收藏
页码:3865 / 3890
页数:26
相关论文
共 66 条
[1]  
Alexandre R., 2014, J AM MATH SOC
[2]   A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM [J].
ASANO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) :102-105
[3]   Remarks on the derivation of the hydrostatic Euler equations [J].
Brenier, Y .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07) :585-595
[4]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[5]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[6]  
2-L
[7]   Existence and uniqueness for the Prandtl equations [J].
Cannone, M ;
Lombardo, MC ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :277-282
[8]  
Cao C, 2012, ARXIV12107337
[9]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[10]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742