Oxygen vacancy engineering of BiOBr/HNb3O8 Z-scheme hybrid photocatalyst for boosting photocatalytic conversion of CO2

被引:54
作者
Zhou, Changjian [1 ]
Shi, Xiangli [1 ]
Li, Di [1 ]
Song, Qi [2 ]
Zhou, Yimeng [2 ]
Jiang, Deli [2 ]
Shi, Weidong [2 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Photocatalytic CO2 reduction; BiOBr/HNb3O8; Oxygen vacancy; Interfacial interaction; Z-scheme mechanism; CHARGE SEPARATION; REDUCTION; HETEROJUNCTION; CHALLENGES; MODULATION; NANOSHEET; HNB3O8;
D O I
10.1016/j.jcis.2021.04.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photo-chemical conversion of CO2 into solar fuels by photocatalysts is a promising and sustainable strategy in response to the ever-increasing environmental problems and imminent energy crisis. However, it is unavoidably impeded by the insufficient active site, undesirable inert charge transfer and fast recombination of photogenerated charge carriers on semiconductor photocatalysts. In this work, all these challenges are overcome by construction of a novel defect-engineered Z-scheme hybrid photocatalyst, which is comprised of three-dimensional (3D) BiOBr nanoflowers assembled by nanosheets with abundant oxygen vacancies (BiOBr-V-O) and two-dimensional (2D) HNb3O8 nanosheets (HNb3O8 NS). The special 3D-2D architecture structure is beneficial to preventing photocatalyst stacking and providing more active sites, and the introduced oxygen vacancies not only broaden the light absorption range but also enhance the electrical conductivity. More importantly, the constructed Z-scheme photocatalytic system could accelerate the charge carriers transfer and separation. As a result, the optimal BiOBr-V-O/HNb3O8 NS (50%-BiOBr-V-O/HNb3O8 NS) shows a high CO production yield of 164.6 mu mol.g(-1) with the selectivity achieves to 98.7% in a mild gassolid system using water as electron donors. Moreover, the BiOBr-V-O/HNb3O8 NS photocatalyst keeps high photocatalytic activity after five cycles under the identical experimental conditions, demonstrating its excellent long-termdurability. Thiswork provided an original strategy to design a newhybrid structure photocatalyst involved V(O)s, thus guiding a new way to further enhance CO2 reduction activity of photocatalyst. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 52 条
[1]   Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures [J].
Ali, Shahzad ;
Lee, Junho ;
Kim, Hwapyong ;
Hwang, Yunju ;
Razzaq, Abdul ;
Jung, Jin-Woo ;
Cho, Chang-Hee ;
In, Su-Il .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[2]   Defect engineering in photocatalytic materials [J].
Bai, Song ;
Zhang, Ning ;
Gao, Chao ;
Xiong, Yujie .
NANO ENERGY, 2018, 53 :296-336
[3]   Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface [J].
Bhosale, Sumit S. ;
Kharade, Aparna K. ;
Jokar, Efat ;
Fathi, Amir ;
Chang, Sue-min ;
Diau, Eric Wei-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (51) :20434-20442
[4]   Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons [J].
Chen, Guangbo ;
Gao, Rui ;
Zhao, Yufei ;
Li, Zhenhua ;
Waterhouse, Geoffrey I. N. ;
Shi, Run ;
Zhao, Jiaqing ;
Zhang, Mengtao ;
Shang, Lu ;
Sheng, Guiyang ;
Zhang, Xiangping ;
Wen, Xiaodong ;
Wu, Li-Zhu ;
Tung, Chen-Ho ;
Zhang, Tierui .
ADVANCED MATERIALS, 2018, 30 (03)
[5]   Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Zhu, Chao ;
Ji, Mengxia ;
Duan, Meilin ;
Long, Ran ;
Yan, Cheng ;
Gu, Kaizhi ;
Xiong, Jun ;
She, Yuanbin ;
Xia, Jiexiang ;
Li, Huaming ;
Liu, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14847-14851
[6]   Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production [J].
Dong, Hongjun ;
Hong, Shihuan ;
Zhang, Pingfan ;
Yu, Siyu ;
Wang, Yun ;
Yuan, Shouqi ;
Li, Hong ;
Sun, Jingxue ;
Chen, Gang ;
Li, Chunmei .
CHEMICAL ENGINEERING JOURNAL, 2020, 395
[7]   Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction [J].
Guo, Lina ;
You, Yong ;
Huang, Hongwei ;
Tian, Na ;
Ma, Tianyi ;
Zhang, Yihe .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 568 :139-147
[8]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408
[9]   Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32--Doped Bi2O2CO3 [J].
Huang, Hongwei ;
Li, Xiaowei ;
Wang, Jinjian ;
Dong, Fan ;
Chu, Paul K. ;
Zhang, Tierui ;
Zhang, Yihe .
ACS CATALYSIS, 2015, 5 (07) :4094-4103
[10]   Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline [J].
Jiang, Deli ;
Wang, Tianyong ;
Xu, Qing ;
Li, Di ;
Meng, Suci ;
Chen, Min .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 201 :617-628