Isometries on the quasi-Banach spaces L p (0 < p < 1)

被引:4
作者
Li, Lei [1 ,2 ]
Ren, Wei Yun [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-Banach spaces; isometric mappings; unit spheres; UNIT SPHERES; EXTENSION;
D O I
10.1007/s10114-010-8225-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extension of isometries between the unit spheres of quasi-Banach spaces L (p) for 0 < p < 1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of L (p) (A mu) into that of another L (p) (nu) can be extended to be a linear isometry defined on the whole space.
引用
收藏
页码:1519 / 1524
页数:6
相关论文
共 13 条
[1]   Isometries on unit sphere of (lβn) [J].
An, GM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (01) :249-254
[2]  
[Anonymous], 1985, LONDON MATH SOC LECT
[3]   On isometric extensions and distance one preserving mappings [J].
Ding, GG .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01) :243-249
[4]   The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space [J].
Ding, GG .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (04) :479-483
[5]  
DING GG, 2002, ACTA MATH SINICA, V22, P279
[6]   The isometric extension of the into mapping from a L∞(Γ)-type space to some Banach space [J].
Ding, Guang-Gui .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) :445-453
[7]  
Ding Guanggui, 1996, Acta Mathematica Sinica. New Series, V12, P1
[8]   The geometry of L0 [J].
Kalton, N. J. ;
Koldobsky, A. ;
Yaskin, V. ;
Yaskina, M. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (05) :1029-1049
[9]   On extension of isometries between unit spheres of L∞ (Γ)-type space and a Banach space E [J].
Liu, Rui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :959-970
[10]  
Rolewicz S., 1985, Metric Linear Spaces