L2 harmonic forms and stability of hypersurfaces with constant mean curvature

被引:23
作者
Cheng, X [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
来源
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA | 2000年 / 31卷 / 02期
关键词
Riemannian manifold; strongly stable hypersurface; constant mean curvature; L-2 harmonic form;
D O I
10.1007/BF01244246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a complete noncompact oriented strongly stable hypersurface M-n with cmc (constant mean curvature) H in a complete oriented manifold Nn+1 with bi-Ricci curvature, satisfying b-Ric(u, v) greater than or equal to n(2)(n-5)/4 H-2 along M, admits no nontrivial L-2 harmonic l-forms. This implies if M-n (2 less than or equal to n less than or equal to 4) is a complete noncompact strongly stable hypersurface in hyperbolic space Hn+1(-1) with cmc H (H-2 L greater than or equal to 4(2n-1)/(5-n)n(2)), there exist no nontrivial L-2 harmonic l-forms on M. We also classify complete oriented strongly stable surfaces with cmc H in a complete oriented manifold N-3 with scalar curvature (S) over tilde satisfying inf(M) (S) over tilde greater than or equal to - 3H(2).
引用
收藏
页码:225 / 239
页数:15
相关论文
共 16 条
[1]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[2]   STABILITY OF COMPLETE NONCOMPACT SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DASILVEIRA, AM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :629-638
[3]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906
[4]  
Dodziuk J, 1982, ANN MATH STUD, V102, P291
[5]  
FARKAS HM, 1980, RIEMANN SURFACE
[6]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[7]  
Frensel K. R., 1996, BOL SOC BRAS MAT, V27, P129
[8]   Clifford Algebraic Reduction Method for Automated Theorem Proving in Differential Geometry [J].
Hongbo L. ;
Minteh C. .
Journal of Automated Reasoning, 1998, 21 (1) :1-21
[9]  
Miyaoka R., 1993, GEOMETRY GLOBAL ANAL, P289
[10]   STABILITY OF MINIMAL HYPERSURFACES [J].
PALMER, B .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (02) :185-188