Deep convolutional neural networks for double compressed AMR audio detection

被引:3
|
作者
Buker, Aykut [1 ]
Hanilci, Cemal [1 ]
机构
[1] Bursa Tech Univ, Dept Elect & Elect Engn, Bursa, Turkey
关键词
STEGANALYSIS;
D O I
10.1049/sil2.12028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detection of double compressed (DC) adaptive multi-rate (AMR) audio recordings is a challenging audio forensic problem and has received great attention in recent years. Here, the authors propose to use convolutional neural networks (CNN) for DC AMR audio detection. The CNN is used as (i) an end-to-end DC AMR audio detection system and (ii) a feature extractor. The end-to-end system receives the audio spectrogram as the input and returns the decision whether the input audio is single compressed (SC) or DC. As a feature extractor in turn, it is used to extract discriminative features and then these features are modelled using support vector machines (SVM) classifier. Our extensive analysis conducted on four different datasets shows the success of the proposed system and provides new findings related to the problem. Firstly, double compression has a considerable impact on the high frequency components of the signal. Secondly, the proposed system yields great performance independent of the recording device or environment. Thirdly, when previously altered files are used in the experiments, 97.41% detection rate is obtained with the CNN system. Finally, the cross-dataset evaluation experiments show that the proposed system is very effective in case of a mismatch between training and test datasets.
引用
收藏
页码:265 / 280
页数:16
相关论文
共 50 条
  • [21] Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset
    de Benito-Gorron, Diego
    Lozano-Diez, Alicia
    Toledano, Doroteo T.
    Gonzalez-Rodriguez, Joaquin
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2019, 2019 (1)
  • [22] Event Detection and Classification Using Deep Compressed Convolutional Neural Network
    Swapnika, K.
    Vasumathi, D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 312 - 322
  • [23] Event Detection and Classification Using Deep Compressed Convolutional Neural Network
    Swapnika, K.
    Vasumathi, D.
    International Journal of Advanced Computer Science and Applications, 2022, 13 (12): : 312 - 322
  • [24] Contour detection and deep convolutional neural networks for glaucoma detection
    Mercy, E. Latha
    Aruna, R.
    Srithar, S.
    Mani, V.
    Sivaganesan, D.
    Baskar, G.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024,
  • [25] Robustness of Compressed Convolutional Neural Networks
    Wijayanto, Arie Wahyu
    Jin, Choong Jun
    Madhawa, Kaushalya
    Murata, Tsuyoshi
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4829 - 4836
  • [26] Facemask Detection Based on Double Convolutional Neural Networks
    Chen G.
    Bai B.
    Zhou H.
    Liu M.
    Yi H.
    Recent Patents on Engineering, 2022, 16 (03)
  • [27] Smile detection in the wild with deep convolutional neural networks
    Junkai Chen
    Qihao Ou
    Zheru Chi
    Hong Fu
    Machine Vision and Applications, 2017, 28 : 173 - 183
  • [28] Evaluation of deep convolutional neural networks for glaucoma detection
    Phan, Sang
    Satoh, Shin'ichi
    Yoda, Yoshioki
    Kashiwagi, Kenji
    Oshika, Tetsuro
    Oshika, Tetsuro
    Hasegawa, Takashi
    Kashiwagi, Kenji
    Miyake, Masahiro
    Sakamoto, Taiji
    Yoshitomi, Takeshi
    Inatani, Masaru
    Yamamoto, Tetsuya
    Sugiyama, Kazuhisa
    Nakamura, Makoto
    Tsujikawa, Akitaka
    Sotozono, Chie
    Sonoda, Koh-Hei
    Terasaki, Hiroko
    Ogura, Yuichiro
    Fukuchi, Takeo
    Shiraga, Fumio
    Nishida, Kohji
    Nakazawa, Toru
    Aihara, Makoto
    Yamashita, Hidetoshi
    Hiyoyuki, Iijima
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2019, 63 (03) : 276 - 283
  • [29] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [30] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193