An Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation

被引:83
作者
Chu, Chenhui [1 ,3 ]
Dabre, Raj [2 ]
Kurohashi, Sadao [2 ]
机构
[1] Osaka Univ, Inst Databil Sci, Suita, Osaka, Japan
[2] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[3] Japan Sci & Technol Agcy, Kawaguchi, Saitama, Japan
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2 | 2017年
关键词
D O I
10.18653/v1/P17-2061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a novel domain adaptation method named "mixed fine tuning" for neural machine translation (NMT). We combine two existing approaches namely fine tuning and multi domain NMT. We first train an NMT model on an out-of-domain parallel corpus, and then fine tune it on a parallel corpus which is a mix of the in-domain and out-of-domain corpora. All corpora are augmented with artificial tags to indicate specific domains. We empirically compare our proposed method against fine tuning and multi domain methods and discuss its benefits and shortcomings.
引用
收藏
页码:385 / 391
页数:7
相关论文
共 25 条
[1]  
[Anonymous], P 10 INT C LANG RES
[2]  
[Anonymous], 2004, EMNLP
[3]  
[Anonymous], ARXIV161206140
[4]  
[Anonymous], 2015, PROC EUR C OPT COMMU
[5]  
[Anonymous], 2015, 3 INT C LEARNING REP
[6]  
[Anonymous], 2016, P 2016 C EMPIRICAL M, DOI DOI 10.18653/V1/D16-1163
[7]  
[Anonymous], 2015, CoRR
[8]  
[Anonymous], ARXIV161206141
[9]  
[Anonymous], P 2016 C EMP METH NA
[10]  
[Anonymous], 2016, P 10 INT C LANG RES