CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin

被引:147
作者
Chen, YL
Abraham, DJ
Xu, SW
Pearson, JD
Black, CM
Lyons, KM
Leask, A
机构
[1] UCL, Royal Free & Univ Coll Med Sch, Ctr Rheumatol, London NW3 2PF, England
[2] Kings Coll London, Ctr Cardiovasc Biol & Med, London SE1 1UL, England
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Orthoped Surg, Los Angeles, CA 90095 USA
关键词
D O I
10.1091/mbc.E04-06-0490
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In vivo, CCN2 (connective tissue growth factor) promotes angiogenesis, osteogenesis, tissue repair, and fibrosis, through largely unknown mechanisms. In vitro, CCN2 promotes cell adhesion in a variety of systems via integrins and heparin sulfate proteoglycans (HSPGs). However, the physiological relevance of CCN2-mediated cell adhesion is unknown. Here, we find that HSPGs and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade are required for adult human dermal fibroblasts to adhere to CCN2. Endogenous CCN2 directly binds fibronectin and the fibronectin receptors integrins alpha4 beta1 and alpha5 and syndecan 4. Using Ccn2-/- mouse embryonic fibroblasts, we show that loss of endogenous CCN2 results in impaired spreading on fibronectin, delayed a-smooth muscle actin stress fiber formation, and reduced ERK and focal adhesion kinase phosphorylation. These results suggest that a physiological role of CCN2 is to potentiate the ability of fibroblasts to spread on fibronectin, which may be important in modulating fibroblast adhesion to the provisional matrix during tissue development and wound healing. These results are consistent with the notion that a principal function of CCN2 is to modulate receptor/ligand interactions in vivo.
引用
收藏
页码:5635 / 5646
页数:12
相关论文
共 51 条
[1]   Tumor necrosis factor α suppresses the induction of connective tissue growth factor by transforming growth factor-β in normal and scleroderma fibroblasts [J].
Abraham, DJ ;
Xu, SW ;
Black, CM ;
Sa, S ;
Xu, YL ;
Leask, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15220-15225
[2]   Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β [J].
Abreu, JG ;
Ketpura, NI ;
Reversade, B ;
De Robertis, EM .
NATURE CELL BIOLOGY, 2002, 4 (08) :599-604
[3]  
Babic AM, 1999, MOL CELL BIOL, V19, P2958
[4]   The extracellular matrix as a scaffold for tissue reconstruction [J].
Badylak, SE .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2002, 13 (05) :377-383
[5]   The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion [J].
Ball, DK ;
Rachfal, AW ;
Kemper, SA ;
Brigstock, DR .
JOURNAL OF ENDOCRINOLOGY, 2003, 176 (02) :R1-R7
[6]   THE MODULAR ARCHITECTURE OF A NEW FAMILY OF GROWTH-REGULATORS RELATED TO CONNECTIVE-TISSUE GROWTH-FACTOR [J].
BORK, P .
FEBS LETTERS, 1993, 327 (02) :125-130
[7]   Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids - Identification as heparin-regulated M-r 10,000 forms of connective tissue growth factor [J].
Brigstock, DR ;
Steffen, CL ;
Kim, GY ;
Vegunta, RK ;
Diehl, JR ;
Harding, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :20275-20282
[8]   Diversity, topographic differentiation, and positional memory in human fibroblasts [J].
Chang, HY ;
Chi, JT ;
Dudoit, S ;
Bondre, C ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12877-12882
[9]   The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts [J].
Chen, CC ;
Chen, NY ;
Lau, LF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10443-10452
[10]   Connective tissue growth factor is secreted through the Golgi and is degraded in the endosome [J].
Chen, YJ ;
Segarini, P ;
Raoufi, F ;
Bradham, D ;
Leask, A .
EXPERIMENTAL CELL RESEARCH, 2001, 271 (01) :109-117