On the spectrum of a vector Schrodinger operator

被引:4
作者
Ismagilov, R. S. [1 ]
Kostyuchenko, A. G.
机构
[1] Bauman Moscow State Tech Univ, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Schrodinger operator; self-adjointness; discrete spectrum; counting function;
D O I
10.1007/s10688-007-0003-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymptotics of the spectrum of a Sturm-Liouville operator acting on a space of vector functions and show that this asymptotics is affected by "rotation" of eigenvectors of the potential. A similar result is obtained for a vector Schrodinger operator.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 1954, DOKL AKAD NAUK SSSR+
[2]  
CYCON HL, 1997, SCHRODINGER OPERATOR
[3]  
GLAZMAN I. M., 1963, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators
[4]  
Ismagilov R. S., 1971, MAT ZAMETKI, V9, P667
[5]  
KOSTYUCHENKO AG, 1966, DOKL AKAD NAUK SSSR+, V168, P21
[6]  
KOSTYUCHENKO AG, 1967, FUNKT ANAL PRIL, V1, P86
[7]  
Kostyuchenko AG, 1979, Distribution of eigenvalues. Selfadjoint ordinary differential operators
[8]  
Levitan B. M., 1968, FUNCT ANAL APPL+, V2, P56
[9]  
Molcanov A.M., 1953, Tr. Mosk. Mat. Obs., P169
[10]  
Titchmarsh E, 1946, EIGENFUNCTION EXPANS