An evaluation of approaches to classification rule selection

被引:18
作者
Coenen, F [1 ]
Leng, P [1 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
来源
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2004年
关键词
D O I
10.1109/ICDM.2004.10012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a number of Classification Rule evaluation measures are considered. In particular the authors review the use of a variety of selection techniques used to order classification rules contained in a classifier and a number of mechanisms used to classify unseen data. The authors demonstrate that rule ordering founded on the size of antecedent works well given certain conditions.
引用
收藏
页码:359 / 362
页数:4
相关论文
共 7 条
[1]  
AGRAWAL R, 1994, P VLDB 97
[2]  
Blake C.L., 1998, UCI repository of machine learning databases
[3]   Tree structures for mining association rules [J].
Coenen, F ;
Goulbourne, G ;
Leng, P .
DATA MINING AND KNOWLEDGE DISCOVERY, 2004, 8 (01) :25-51
[4]  
Lavrac N, 1999, LECT NOTES ARTIF INT, V1634, P174
[5]   CMAR: Accurate and efficient classification based on Multiple Class-Association Rules [J].
Li, WM ;
Han, JW ;
Pei, J .
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, :369-376
[6]  
Liu B, 1998, P 4 INT C KNOWL DISC, P80
[7]  
Yin XX, 2003, SIAM PROC S, P331