AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics

被引:91
作者
Casalino, Lorenzo [1 ]
Dommer, Abigail [1 ]
Gaieb, Zied [1 ]
Barros, Emilia P. [1 ]
Sztain, Terra [1 ]
Ahn, Surl-Hee [1 ]
Trifan, Anda [2 ,3 ]
Brace, Alexander [2 ]
Bogetti, Anthony [4 ]
Ma, Heng [2 ,5 ]
Lee, Hyungro [6 ]
Turilli, Matteo [6 ]
Khalid, Syma [8 ]
Chong, Lillian [4 ]
Simmerling, Carlos [9 ]
Hardy, David J. [3 ]
Maia, Julio D. C. [3 ]
Phillips, James C. [3 ]
Kurth, Thorsten [10 ]
Stern, Abraham [10 ]
Huang, Lei [11 ]
McCalpin, John [11 ]
Tatineni, Mahidhar [12 ]
Gibbs, Tom [10 ]
Stone, John E. [3 ]
Jha, Shantenu [6 ,7 ]
Ramanathan, Arvind [2 ]
Amaro, Rommie E. [1 ]
机构
[1] Univ Calif San Diego, 3234 Urey Hall,MC-0340, La Jolla, CA 92093 USA
[2] Argonne Natl Lab, Lemont, IL 60439 USA
[3] Univ Illinois, Urbana, IL USA
[4] Univ Pittsburgh, Pittsburgh, PA USA
[5] Univ Chicago, Chicago, IL 60637 USA
[6] Rutgers State Univ, Piscataway, NJ USA
[7] Brookhaven Natl Lab, Upton, NY 11973 USA
[8] Univ Southampton, Southampton, Hants, England
[9] SUNY Stony Brook, Stony Brook, NY 11794 USA
[10] NVIDIA Corp, Santa Clara, CA USA
[11] Texas Adv Comp Ctr, Austin, TX USA
[12] San Diego Supercomp Ctr, La Jolla, CA USA
关键词
Molecular dynamics; deep learning; multiscale simulation; weighted ensemble; computational virology; SARS-CoV-2; COVID19; HPC; GPU; AI; SCALABLE MOLECULAR-DYNAMICS;
D O I
10.1177/10943420211006452
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.
引用
收藏
页码:432 / 451
页数:20
相关论文
共 78 条
  • [1] Acun B, 2018, IBM J RES DEV, V62, DOI [10.1147/jrd.2018.2888986, 10.1147/JRD.2018.2888986]
  • [2] Computational methods for exploring protein conformations
    Allison, Jane R.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (04) : 1707 - 1724
  • [3] A Community Letter Regarding Sharing Biomolecular Simulation Data for COVID-19
    Amaro, Rommie E.
    Mulholland, Adrian J.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (06) : 2653 - 2656
  • [4] Arjovsky M, 2017, PR MACH LEARN RES, V70
  • [5] Data-Driven Molecular Dynamics: A Multifaceted Challenge
    Bernetti, Mattia
    Bertazzo, Martina
    Masetti, Matteo
    [J]. PHARMACEUTICALS, 2020, 13 (09) : 1 - 26
  • [6] Deep clustering of protein folding simulations
    Bhowmik, Debsindhu
    Gao, Shang
    Young, Michael T.
    Ramanathan, Arvind
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [7] Neural networks-based variationally enhanced sampling
    Bonati, Luigi
    Zhang, Yue-Yu
    Parrinello, Michele
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (36) : 17641 - 17647
  • [8] Casalino Lorenzo, 2020, bioRxiv, DOI 10.1101/2020.06.11.146522
  • [9] Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues
    Casares, Doralicia
    Escriba, Pablo V.
    Ana Rossello, Catalina
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
  • [10] Outer membrane protein G: Engineering a quiet pore for biosensing
    Chen, Min
    Khalid, Syma
    Sansom, Mark S. P.
    Bayley, Hagan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (17) : 6272 - 6277