On quasimonotone Stampacchia variational inequalities on Hadamard manifolds

被引:0
作者
Amini-Harandi, A. [1 ]
Fakhar, M. [1 ]
Nasiri, L. [1 ]
机构
[1] Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan, Iran
关键词
Hadamard manifold; Stampacchia variational inequality; quasimonotone map;
D O I
10.1080/02331934.2021.1915311
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, which is deeply inspired from Aussel and Hadjisavvas [On quasimonotone variational inequalities. J Optim Theory Appl. 2004;121:445-450] and Daniilidis and Hadjisavvas [Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J Optim Theory Appl. 1999;102(3):525-536], we study the existence of solutions of the Stampacchia variational inequality for a quasimonotone set-valued vector field on a Hadamard manifold. Moreover, the existence results are obtained under weak assumptions like quasimonotonicity and upper-sign continuity. An application of our results is also given.
引用
收藏
页码:3695 / 3708
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2006, ACM SIGARCH Computer Architecture News, DOI [DOI 10.1145/1186736.1186737, 10.1145/1186736.1186737]
[2]   Adjusted sublevel sets, normal operator, and quasi-convex programming [J].
Aussel, D ;
Hadjisavvas, N .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :358-367
[3]   Quasimonotone Quasivariational Inequalities: Existence Results and Applications [J].
Aussel, D. ;
Cotrina, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (03) :637-652
[4]  
Aussel D., 2014, Fixed point theory, variational analysis, and optimization, P171
[5]   Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) :1-17
[6]  
Browder FE., 1955, T AM MATH SOC, V71, P780
[7]   Vector variational inequality with pseudoconvexity on Hadamard manifolds [J].
Chen, Sheng-lan ;
Fang, Chang-jie .
OPTIMIZATION, 2016, 65 (12) :2067-2080
[8]  
Cheng, 1987, VECTOR VARIATIONAL I, V285, P408
[9]  
Clarke F. H., 1990, OPTIMIZATION NONSMOO
[10]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262