A loop-loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control

被引:69
作者
Blouin, Simon [1 ]
Lafontaine, Daniel A. [1 ]
机构
[1] Univ Sherbrooke, Fac Sci, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada
关键词
riboswitch; loop-loop interaction; kink-turn; 2-aminopurine fluorescence;
D O I
10.1261/rna.560307
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The lysine riboswitch is associated to the lysC gene in Bacillus subtilis, and the binding of lysine modulates the RNA structure to allow the formation of an intrinsic terminator presumably involved in transcription attenuation. The complex secondary structure of the lysine riboswitch aptamer is organized around a five-way junction that undergoes structural changes upon ligand binding. Using single-round transcription assays, we show that a loop-loop interaction is important for lysine-induced termination of transcription. Moreover, upon close inspection of the secondary structure, we find that an unconventional kink-turn motif is present in one of the stems participating in the loop - loop interaction. We show that the K-turn adopts a pronounced kink and that it binds the K-turn-binding protein L7Ae of Archaeoglobus fulgidus in the low nanomolar range. The functional importance of this K-turn motif is revealed from single-round transcription assays, which show its importance for efficient transcription termination. This motif is essential for the loop-loop interaction, and consequently, for lysine binding. Taken together, our results depict for the first time the importance of a K-turn- dependent loop-loop interaction for the transcription regulation of a lysine riboswitch.
引用
收藏
页码:1256 / 1267
页数:12
相关论文
共 71 条
[1]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[2]   New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control [J].
Barrick, JE ;
Corbino, KA ;
Winkler, WC ;
Nahvi, A ;
Mandal, M ;
Collins, J ;
Lee, M ;
Roth, A ;
Sudarsan, N ;
Jona, I ;
Wickiser, JK ;
Breaker, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6421-6426
[3]   RNA BULGES AND THE HELICAL PERIODICITY OF DOUBLE-STRANDED-RNA [J].
BHATTACHARYYA, A ;
MURCHIE, AIH ;
LILLEY, DMJ .
NATURE, 1990, 343 (6257) :484-487
[4]   THE CONTRASTING STRUCTURES OF MISMATCHED DNA-SEQUENCES CONTAINING LOOPED-OUT BASES (BULGES) AND MULTIPLE MISMATCHES (BUBBLES) [J].
BHATTACHARYYA, A ;
LILLEY, DMJ .
NUCLEIC ACIDS RESEARCH, 1989, 17 (17) :6821-6840
[5]   Antibacterial lysine analogs that target lysine riboswitches [J].
Blount, Kenneth F. ;
Wang, Joy Xin ;
Lim, Jinsoo ;
Sudarsan, Narasimhan ;
Breaker, Ronald R. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (01) :44-49
[6]  
Breaker RR, 2006, COLD SPRING HARB MON, V43, P89
[7]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[8]   Small non-coding RNAs in archaea [J].
Dennis, PP ;
Omer, A .
CURRENT OPINION IN MICROBIOLOGY, 2005, 8 (06) :685-694
[9]   ON THE SEQUENCE DETERMINANTS AND FLEXIBILITY OF THE KINETOPLAST DNA FRAGMENT WITH ABNORMAL GEL-ELECTROPHORETIC MOBILITIES [J].
DIEKMANN, S ;
WANG, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (01) :1-11
[10]   The riboswitch-mediated control of sulfur metabolism in bacteria [J].
Epshtein, V ;
Mironov, AS ;
Nudler, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5052-5056