Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride

被引:16
作者
Lim, Jong-Heon [1 ]
Myung, Yoon [2 ]
Yang, MinHo [1 ]
Lee, Jae-won [1 ]
机构
[1] Dankook Univ, Dept Energy Engn, Cheonan 31116, South Korea
[2] Korea Inst Ind Technol KITECH, Dongnam Reg Div, Busan 46744, South Korea
基金
新加坡国家研究基金会;
关键词
carbon monofluoride; encapsulation; artificial protective layer; lithium cobalt oxide; lithium metal battery; LITHIUM-METAL BATTERIES; THERMAL-DECOMPOSITION; LICOO2; CATHODE; ION BATTERY; HIGH-ENERGY; BEHAVIOR;
D O I
10.1021/acsami.1c08419
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium batteries that utilize a lithium anode and a high voltage cathode are highly required to meet the growing demand for electrification of transportation. High voltage lithium cobalt oxide (LiCoO2, LCO) can be a promising choice for lithium batteries with high energy and power. However, intrinsic structural instability at high voltages (>4.2 V) leads to significant capacity loss during the repeated cycles of charge-discharge. Herein, a simple and effective method has been proposed to prepare an artificial protective layer of LCO, enabling the LCO to achieve long-term cycle stability at 4.5 V. It is found that carbon monofluoride reacts with LCO via defluorination at 400 degrees C to form a LiF-C layer on LCO, which suppresses side reactions at the electrolyte/electrode interface. Moreover, the LiF-C layer plays a key role in not only facilitating charge transport but also restricting Co dissolution from the cathode. The Li//LiF-C coated LCO cells deliver an initial discharge capacity of 186 mAh g(-1) at 0.1C and exhibit excellent cycling and rate performance: 161 mAh g(-1) after 180 cycles (90% of the initial value at 0.5C) and 115 mAh g(-1) at 10C (63.2% of the 0.1C capacity).
引用
收藏
页码:31741 / 31748
页数:8
相关论文
共 40 条
[1]   Electrical conduction of LiF interlayers in organic diodes [J].
Bory, Benjamin F. ;
Gomes, Henrique L. ;
Janssen, Rene A. J. ;
de Leeuw, Dago M. ;
Meskers, Stefan C. J. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (15)
[2]   Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries [J].
Cha, Jiho ;
Han, Jung-Gu ;
Hwang, Jaeseong ;
Cho, Jaephil ;
Choi, Nam-Soon .
JOURNAL OF POWER SOURCES, 2017, 357 :97-106
[3]   Critical Role of Cations in Lithium Sites on Extended Electrochemical Reversibility of Co-Rich Layered Oxide [J].
Cho, Woongrae ;
Myeong, Seungjun ;
Kim, Namhyung ;
Lee, Sanghan ;
Kim, Youngki ;
Kim, Maengsuk ;
Kang, Seok Ju ;
Park, Noejung ;
Oh, Pilgun ;
Cho, Jaephil .
ADVANCED MATERIALS, 2017, 29 (21)
[4]   Extending the High-Voltage Capacity of LiCoO2 Cathode by Direct Coating of the Composite Electrode with Li2CO3 via Magnetron Sputtering [J].
Dai, Xinyi ;
Zhou, Aijun ;
Xu, Jin ;
Lu, Yanting ;
Wang, Liping ;
Fan, Cong ;
Li, Jingze .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :422-430
[5]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+
[6]   A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J].
Du Pasquier, A ;
Plitz, I ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :171-178
[7]   Sustainable transportation based on electric vehicle concepts: a brief overview [J].
Eberle, Ulrich ;
von Helmolt, Rittmar .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (06) :689-699
[8]   Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy [J].
Hao, Menglong ;
Li, Jian ;
Park, Saehong ;
Moura, Scott ;
Dames, Chris .
NATURE ENERGY, 2018, 3 (10) :899-906
[9]   Degradation mechanism of LiCoO2 under float charge conditions and high temperatures [J].
Hirooka, Motoyuki ;
Sekiya, Tomohito ;
Omomo, Yoshitomo ;
Yamada, Masayuki ;
Katayama, Hideaki ;
Okumura, Takefumi ;
Yamada, Yusuke ;
Ariyosh, Kingo .
ELECTROCHIMICA ACTA, 2019, 320
[10]   Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between-40 and 60 °C [J].
Hou, Junbo ;
Yang, Min ;
Wang, Deyu ;
Zhang, Junliang .
ADVANCED ENERGY MATERIALS, 2020, 10 (18)