Deep transfer learning of global spectra for local soil carbon monitoring

被引:50
作者
Shen, Zefang [1 ]
Ramirez-Lopez, Leonardo [2 ]
Behrens, Thorsten [3 ,4 ]
Cui, Lei [5 ]
Zhang, Mingxi [1 ]
Walden, Lewis [1 ]
Wetterlind, Johanna [6 ]
Shi, Zhou [7 ]
Sudduth, Kenneth A. [8 ]
Song, Yongze [9 ]
Catambay, Kevin [1 ,5 ]
Rossel, Raphael A. Viscarra [1 ]
机构
[1] Curtin Univ, Sch Mol & Life Sci, Soil & Landscape Sci, GPOB U1987, Perth, WA 6845, Australia
[2] BUCHI Labortechn AG, Data Sci Dept, CH-9230 Flawil, Switzerland
[3] Soilution GbR, Soil & Spatial Data Sci, Heiligegeist Str 13, D-06484 Quedlinburg, Germany
[4] Bern Univ Appl Sci, Compentence Ctr Soils KOBO, Sch Agr Forest & Food Sci HAFL, Langgasse 85, CH-3052 Zollikofen, Switzerland
[5] Curtin Univ, Dept Mech Engn, GPOB U1987, Perth, WA 6845, Australia
[6] Swedish Univ Agr Sci, Dept Soil & Environm, POB 234, SE-53223 Skara, Sweden
[7] Zhejiang Univ, Inst Agr Remote Sensing & Informat Technol Applica, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
[8] USDA ARS, Cropping Syst & Water Qual Res Unit, Columbia, MO 65211 USA
[9] Curtin Univ, Sch Design & Built Environm, GPO Box U1987, Perth, WA 6845, Australia
关键词
Soil organic carbon; Visible -near-infrared spectra; Transfer learning; Deep learning; Spectral library; NEAR-INFRARED SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; ORGANIC-CARBON; PREDICTION; SCALE; CALIBRATIONS; REGRESSION; LIBRARIES; DIVERSITY; ABUNDANCE;
D O I
10.1016/j.isprsjprs.2022.04.009
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
There is global interest in spectroscopy and the development of large and diverse soil spectral libraries (SSL) to model soil organic carbon (SOC) and monitor, report, and verify (MRV) its changes. The reason is that increasing SOC can improve food production and mitigate climate change. However, 'global' modelling of SOC with such diverse and hyperdimensional SSLs do not generalise well locally, e.g. at a field scale. To address this challenge, we propose deep transfer learning (DTL) to leverage useful information from large-scale SSLs to assist local modelling. We used one global, three country-specific SSLs and data from three local sites with DTL to improve the modelling and localise the SOC estimates in individual fields or farms in each country. With DTL, we transferred instances from the SSLs, representations from one-dimensional convolutional neural networks (1DCNNs) trained on the SSLs, and both instances and representations to improve local modelling. Transferring instances effectively used information from the global SSL to most accurately estimate SOC in each site, reducing the root mean square error (RMSE) by 25.8% on average compared with local modelling. Our results highlight the effectiveness of DTL and the value of diverse, global SSLs for accurate local SOC predictions. Applying DTL with a global SSL one could estimate SOC anywhere in the world more accurately, rapidly, and cost-effectively, enabling MRV protocols to monitor SOC changes.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 72 条
[41]   The spectrum-based learner: A new local approach for modeling soil vis-NIR spectra of complex datasets [J].
Ramirez-Lopez, Leonardo ;
Behrens, Thorsten ;
Schmidt, Karsten ;
Stevens, Antoine ;
Dematte, Jose Alexandre M. ;
Scholten, Thomas .
GEODERMA, 2013, 195 :268-279
[42]   A global spectral library to characterize the world's soil [J].
Rossel, R. A. Viscarra ;
Behrens, T. ;
Ben-Dor, E. ;
Brown, D. J. ;
Dematte, J. A. M. ;
Shepherd, K. D. ;
Shi, Z. ;
Stenberg, B. ;
Stevens, A. ;
Adamchuk, V. ;
Aichi, H. ;
Barthes, B. G. ;
Bartholomeus, H. M. ;
Bayer, A. D. ;
Bernoux, M. ;
Bottcher, K. ;
Brodsky, L. ;
Du, C. W. ;
Chappell, A. ;
Fouad, Y. ;
Genot, V. ;
Gomez, C. ;
Grunwald, S. ;
Gubler, A. ;
Guerrero, C. ;
Hedley, C. B. ;
Knadel, M. ;
Morras, H. J. M. ;
Nocita, M. ;
Ramirez-Lopez, L. ;
Roudier, P. ;
Rufasto Campos, E. M. ;
Sanborn, P. ;
Sellitto, V. M. ;
Sudduth, K. A. ;
Rawlins, B. G. ;
Walter, C. ;
Winowiecki, L. A. ;
Hong, S. Y. ;
Ji, W. .
EARTH-SCIENCE REVIEWS, 2016, 155 :198-230
[43]   Predicting soil properties from the Australian soil visible-near infrared spectroscopic database [J].
Rossel, R. A. Viscarra ;
Webster, R. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2012, 63 (06) :848-860
[44]   In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy [J].
Rossel, R. A. Viscarra ;
Cattle, S. R. ;
Ortega, A. ;
Fouad, Y. .
GEODERMA, 2009, 150 (3-4) :253-266
[45]   Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C [J].
Sankey, Joel B. ;
Brown, David J. ;
Bernard, Melisa L. ;
Lawrence, Rick L. .
GEODERMA, 2008, 148 (02) :149-158
[46]   CARBON BALANCE IN TERRESTRIAL DETRITUS [J].
SCHLESINGER, WH .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1977, 8 :51-81
[47]   Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations [J].
Seidel, Michael ;
Hutengs, Christopher ;
Ludwig, Bernard ;
Thiele-Bruhn, Soeren ;
Vohland, Michael .
GEODERMA, 2019, 354
[48]   Automated spectroscopic modelling with optimised convolutional neural networks [J].
Shen, Zefang ;
Rossel, R. A. Viscarra .
SCIENTIFIC REPORTS, 2021, 11 (01)
[49]  
Shenk J.S., 1997, J NEAR INFRARED SPEC, V5, P223, DOI DOI 10.1255/JNIRS.115
[50]   Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy [J].
Shepherd, KD ;
Palm, CA ;
Gachengo, CN ;
Vanlauwe, B .
AGRONOMY JOURNAL, 2003, 95 (05) :1314-1322