Deep transfer learning of global spectra for local soil carbon monitoring

被引:42
作者
Shen, Zefang [1 ]
Ramirez-Lopez, Leonardo [2 ]
Behrens, Thorsten [3 ,4 ]
Cui, Lei [5 ]
Zhang, Mingxi [1 ]
Walden, Lewis [1 ]
Wetterlind, Johanna [6 ]
Shi, Zhou [7 ]
Sudduth, Kenneth A. [8 ]
Song, Yongze [9 ]
Catambay, Kevin [1 ,5 ]
Rossel, Raphael A. Viscarra [1 ]
机构
[1] Curtin Univ, Sch Mol & Life Sci, Soil & Landscape Sci, GPOB U1987, Perth, WA 6845, Australia
[2] BUCHI Labortechn AG, Data Sci Dept, CH-9230 Flawil, Switzerland
[3] Soilution GbR, Soil & Spatial Data Sci, Heiligegeist Str 13, D-06484 Quedlinburg, Germany
[4] Bern Univ Appl Sci, Compentence Ctr Soils KOBO, Sch Agr Forest & Food Sci HAFL, Langgasse 85, CH-3052 Zollikofen, Switzerland
[5] Curtin Univ, Dept Mech Engn, GPOB U1987, Perth, WA 6845, Australia
[6] Swedish Univ Agr Sci, Dept Soil & Environm, POB 234, SE-53223 Skara, Sweden
[7] Zhejiang Univ, Inst Agr Remote Sensing & Informat Technol Applica, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
[8] USDA ARS, Cropping Syst & Water Qual Res Unit, Columbia, MO 65211 USA
[9] Curtin Univ, Sch Design & Built Environm, GPO Box U1987, Perth, WA 6845, Australia
关键词
Soil organic carbon; Visible -near-infrared spectra; Transfer learning; Deep learning; Spectral library; NEAR-INFRARED SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; ORGANIC-CARBON; PREDICTION; SCALE; CALIBRATIONS; REGRESSION; LIBRARIES; DIVERSITY; ABUNDANCE;
D O I
10.1016/j.isprsjprs.2022.04.009
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
There is global interest in spectroscopy and the development of large and diverse soil spectral libraries (SSL) to model soil organic carbon (SOC) and monitor, report, and verify (MRV) its changes. The reason is that increasing SOC can improve food production and mitigate climate change. However, 'global' modelling of SOC with such diverse and hyperdimensional SSLs do not generalise well locally, e.g. at a field scale. To address this challenge, we propose deep transfer learning (DTL) to leverage useful information from large-scale SSLs to assist local modelling. We used one global, three country-specific SSLs and data from three local sites with DTL to improve the modelling and localise the SOC estimates in individual fields or farms in each country. With DTL, we transferred instances from the SSLs, representations from one-dimensional convolutional neural networks (1DCNNs) trained on the SSLs, and both instances and representations to improve local modelling. Transferring instances effectively used information from the global SSL to most accurately estimate SOC in each site, reducing the root mean square error (RMSE) by 25.8% on average compared with local modelling. Our results highlight the effectiveness of DTL and the value of diverse, global SSLs for accurate local SOC predictions. Applying DTL with a global SSL one could estimate SOC anywhere in the world more accurately, rapidly, and cost-effectively, enabling MRV protocols to monitor SOC changes.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 72 条
  • [1] [Anonymous], 2004, GLOBAL CARBON CYCLE
  • [2] STANDARD NORMAL VARIATE TRANSFORMATION AND DE-TRENDING OF NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA
    BARNES, RJ
    DHANOA, MS
    LISTER, SJ
    [J]. APPLIED SPECTROSCOPY, 1989, 43 (05) : 772 - 777
  • [3] BEC TAU USCM UZAY FASF IPB SRTI CUT CEDARE., 2019, REG SOIL SPECTR LIB
  • [4] Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed
    Brown, David J.
    [J]. GEODERMA, 2007, 140 (04) : 444 - 453
  • [5] Global soil characterization with VNIR diffuse reflectance spectroscopy
    Brown, David J.
    Shepherd, Keith D.
    Walsh, Markus G.
    Mays, M. Dewayne
    Reinsch, Thomas G.
    [J]. GEODERMA, 2006, 132 (3-4) : 273 - 290
  • [6] Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands
    Castaldi, Fabio
    Hueni, Andreas
    Chabrillat, Sabine
    Ward, Kathrin
    Buttafuoco, Gabriele
    Bomans, Bart
    Vreys, Kristin
    Brell, Maximilian
    van Wesemael, Bas
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 147 : 267 - 282
  • [7] National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy
    Clairotte, Michael
    Grinand, Clovis
    Kouakoua, Ernest
    Thebault, Aurelie
    Saby, Nicolas P. A.
    Bernoux, Martial
    Barthes, Bernard G.
    [J]. GEODERMA, 2016, 276 : 41 - 52
  • [8] Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning
    Cui, Yin
    Song, Yang
    Sun, Chen
    Howard, Andrew
    Belongie, Serge
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4109 - 4118
  • [9] The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
    Dematte, Jose A. M.
    Dotto, Andre Carnieletto
    Paivaa, Ariane F. S.
    Sato, Marcus, V
    Dalmolin, Ricardo S. D.
    de Araujo, Maria do Socorro B.
    da Silva, Elisangela B.
    Nanni, Marcos R.
    ten Caten, Alexandre
    Noronha, Norberto C.
    Lacerda, Marilusa P. C.
    de Araujo Filho, Jose Coelho
    Rizzo, Rodnei
    Bellinaso, Henrique
    Francelino, Marcio R.
    Schaefer, Carlos E. G. R.
    Vicente, Luiz E.
    dos Santos, Uemeson J.
    Barretto Sampaio, Everardo V. de Sa
    Menezes, Romulo S. C.
    de Souza, Jose Joao L. L.
    Abrahao, Walter A. P.
    Coelho, Ricardo M.
    Grego, Celia R.
    Lani, Joao L.
    Fernandes, Antonio R.
    Goncalves, Deyvison A. M.
    Silva, Sergio H. G.
    de Menezes, Michele D.
    Curi, Nilton
    Couto, Eduardo G.
    dos Anjos, Lucia H. C.
    Ceddia, Marcos B.
    Pinheiro, Erika F. M.
    Grunwald, Sabine
    Vasques, Gustavo M.
    Marques Junior, Jose
    da Silvax, Airon J.
    de Vasconcelos Barreto, Marcos C.
    Nobrega, Gabriel N.
    da Silva, Marcelo Z.
    de Souza, Sara F.
    Valladares, Gustavo S.
    Viana, Joao Herbert M.
    Terra, Fabricio da Silva
    Horak-Terra, Ingrid
    Fiorio, Peterson R.
    da Silva, Rafael C.
    Frade Junior, Elizio F.
    Lima, Raimundo H. C.
    [J]. GEODERMA, 2019, 354
  • [10] Proximal sensing for soil carbon accounting
    England, Jacqueline R.
    Rossel, Raphael A. Viscarra
    [J]. SOIL, 2018, 4 (02) : 101 - 122