Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation

被引:109
作者
Liu, Dong [1 ,2 ]
Xie, Maolin [1 ,2 ]
Wang, Chengming [1 ,2 ]
Liao, Lingwen [3 ]
Qiu, Lu [1 ,2 ]
Ma, Jun [1 ,2 ]
Huang, Hao [1 ,2 ]
Long, Ran [1 ,2 ]
Jiang, Jun [1 ,2 ]
Xiong, Yujie [1 ,2 ]
机构
[1] Hefei Sci Ctr CAS, Hefei Natl Lab Phys Sci Microscale, IChEM Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230021, Peoples R China
基金
中国国家自然科学基金;
关键词
palladium; silver; electrocatalysis; formic acid oxidation; hollow nanostructures; FACILE SYNTHESIS; OPTICAL-PROPERTIES; NANOCRYSTALS; NANOPARTICLES; CATALYSTS; GROWTH; ANODE; ELECTROOXIDATION; PERFORMANCE; NANOBOXES;
D O I
10.1007/s12274-016-1053-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formic acid oxidation is an important electrocatalytic reaction in protonexchange membrane (PEM) fuel cells, in which both active sites and species adsorption/activation play key roles. In this study, we have developed hollow Pd-Ag alloy nanostructures with high active surface areas for application to electrocatalytic formic acid oxidation. When a certain amount of Ag is incorporated into a Pd lattice, which is already a highly active material for formic acid oxidation, the electrocatalytic activity can be significantly boosted. As indicated by theoretical simulations, coupling between Pd and Ag induces polarization charges on Pd catalytic sites, which can enhance the adsorption of HCOO* species. As a result, the designed electrocatalysts can achieve reduced Pd usage and enhanced catalytic properties at the same time. This study represents an approach that simultaneously fabricates hollow structures to increase the number of active sites and utilizes interatomic interactions to tune species adsorption/activation towards improved electrocatalytic performance.
引用
收藏
页码:1590 / 1599
页数:10
相关论文
共 39 条
[1]   The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces [J].
Arenz, M ;
Stamenkovic, V ;
Schmidt, TJ ;
Wandelt, K ;
Ross, PN ;
Markovic, NM .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (19) :4242-4251
[2]   Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts [J].
Bai, Song ;
Yang, Li ;
Wang, Chunlei ;
Lin, Yue ;
Lu, Junling ;
Jiang, Jun ;
Xiong, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14810-14814
[3]   Surface Polarization Matters: Enhancing the Hydrogen-Evolution Reaction by Shrinking Pt Shells in Pt-Pd-Graphene Stack Structures [J].
Bai, Song ;
Wang, Chengming ;
Deng, Mingsen ;
Gong, Ming ;
Bai, Yu ;
Jiang, Jun ;
Xiong, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (45) :12120-12124
[4]   Shape dependent electrocatalytic behaviour of silver nanoparticles [J].
Bansal, Vipul ;
Li, Vivian ;
O'Mullane, Anthony P. ;
Bhargava, Suresh K. .
CRYSTENGCOMM, 2010, 12 (12) :4280-4286
[5]   Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface [J].
Casado-Rivera, E ;
Gál, Z ;
Angelo, ACD ;
Lind, C ;
DiSalvo, FJ ;
Abruña, HD .
CHEMPHYSCHEM, 2003, 4 (02) :193-199
[6]   An Effective Pd-Ni2P/C Anode Catalyst for Direct Formic Acid Fuel Cells [J].
Chang, Jinfa ;
Feng, Ligang ;
Liu, Changpeng ;
Xing, Wei ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (01) :122-126
[7]   Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions [J].
Chen, JY ;
Wiley, B ;
McLellan, J ;
Xiong, YJ ;
Li, ZY ;
Xia, YN .
NANO LETTERS, 2005, 5 (10) :2058-2062
[8]   Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions [J].
Chen, Luyang ;
Guo, Hai ;
Fujita, Takeshi ;
Hirata, Akihiko ;
Zhang, Wei ;
Inoue, Akihisa ;
Chen, Mingwei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (22) :4364-4370
[9]   Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells [J].
Demirci, Umit B. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :11-18
[10]   Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction [J].
Fu, Geng-Tao ;
Liu, Chang ;
Zhang, Qi ;
Chen, Yu ;
Tang, Ya-Wen .
SCIENTIFIC REPORTS, 2015, 5