Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition

被引:222
作者
Lu, JW [1 ]
Plataniotis, KN [1 ]
Venetsanopoulos, AN [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Bell Canada Multimedia Lab, Toronto, ON M5S 3G4, Canada
关键词
linear discriminant analysis; small sample size; regularization; face recognition;
D O I
10.1016/j.patrec.2004.09.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well-known that the applicability of linear discriminant analysis (LDA) to high-dimensional pattern classification tasks such as face recognition often suffers from the so-called "small sample size" (SSS) problem arising from the small number of available training samples compared to the dimensionality of the sample space. In this paper, we propose a new LDA method that attempts to address the SSS problem using a regularized Fisher's separability criterion. In addition, a scheme of expanding the representational capacity of face database is introduced to overcome the limitation that the LDA-based algorithms require at least two samples per class available for learning. Extensive experiments performed on the FERET database indicate that the proposed methodology outperforms traditional methods such as Eigenfaces and some recently introduced LDA variants in a number of SSS scenarios. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 29 条
[1]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[2]   HUMAN AND MACHINE RECOGNITION OF FACES - A SURVEY [J].
CHELLAPPA, R ;
WILSON, CL ;
SIROHEY, S .
PROCEEDINGS OF THE IEEE, 1995, 83 (05) :705-740
[3]   A new LDA-based face recognition system which can solve the small sample size problem [J].
Chen, LF ;
Liao, HYM ;
Ko, MT ;
Lin, JC ;
Yu, GJ .
PATTERN RECOGNITION, 2000, 33 (10) :1713-1726
[4]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[5]   REGULARIZED DISCRIMINANT-ANALYSIS [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :165-175
[6]  
Gong S., 2000, DYNAMIC VISION
[7]   OPTIMAL DISCRIMINANT PLANE FOR A SMALL NUMBER OF SAMPLES AND DESIGN METHOD OF CLASSIFIER ON THE PLANE [J].
HONG, ZQ ;
YANG, JY .
PATTERN RECOGNITION, 1991, 24 (04) :317-324
[8]  
HUANG J, 2003, P IEEE INT WORKSH AN
[9]  
Ke Liu, 1992, International Journal of Pattern Recognition and Artificial Intelligence, V6, P817, DOI 10.1142/S0218001492000412
[10]   On combining classifiers [J].
Kittler, J ;
Hatef, M ;
Duin, RPW ;
Matas, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :226-239