Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development

被引:117
作者
Pan, Irvin L. [1 ]
McQuinn, Ryan [3 ]
Giovannoni, James J. [3 ,4 ]
Irish, Vivian F. [1 ,2 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA
[3] ARS, USDA, Plant Soil & Nutr Lab, Ithaca, NY 14853 USA
[4] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国农业部;
关键词
AGAMOUS; flower development; fruit development; MADS box; tomato; MADS-BOX GENES; ECTOPIC EXPRESSION; OVULE DEVELOPMENT; FLORAL DEVELOPMENT; ARABIDOPSIS; ANTIRRHINUM; EVOLUTION; PETUNIA; PLANTS; PMADS3;
D O I
10.1093/jxb/erq046
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
AGAMOUS clade genes encode MADS box transcription factors that have been shown to play critical roles in many aspects of flower and fruit development in angiosperms. Tomato possesses two representatives of this lineage, TOMATO AGAMOUS (TAG1) and TOMATO AGAMOUS-LIKE1 (TAGL1), allowing for an analysis of diversification of function after gene duplication. Using RNAi (RNA interference) silencing, transgenic tomato lines that specifically down-regulate either TAGL1 or TAG1 transcript accumulation have been produced. TAGL1 RNAi lines show no defects in stamen or carpel identity, but show defects in fruit ripening. In contrast TAG1 RNAi lines show defects in stamen and carpel development. In addition TAG1 RNAi lines produce red ripe fruit, although they are defective in determinacy and produce ectopic internal fruit structures. e2814, an EMS- (ethyl methane sulphonate) induced mutation that is temperature sensitive and produces fruit phenotypes similar to that of TAG1 RNAi lines, was also characterized. Neither TAG1 nor TAGL1 expression is disrupted in the e2814 mutant, suggesting that the gene corresponding to the e2814 mutant represents a distinct locus that is likely to be functionally downstream of TAG1 and TAGL1. Based on these analyses, possible modes by which these gene duplicates have diversified in terms of their functions and regulatory roles are discussed.
引用
收藏
页码:1795 / 1806
页数:12
相关论文
共 47 条
[1]   Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development [J].
Alba, R ;
Payton, P ;
Fei, ZJ ;
McQuinn, R ;
Debbie, P ;
Martin, GB ;
Tanksley, SD ;
Giovannoni, JJ .
PLANT CELL, 2005, 17 (11) :2954-2965
[2]   A NOVEL CLASS OF MADS BOX GENES IS INVOLVED IN OVULE DEVELOPMENT IN PETUNIA [J].
ANGENENT, GC ;
FRANKEN, J ;
BUSSCHER, M ;
VANDIJKEN, A ;
VANWENT, JL ;
DONS, HJM ;
VANTUNEN, AJ .
PLANT CELL, 1995, 7 (10) :1569-1582
[3]   Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1667-1678
[4]   GENES DIRECTING FLOWER DEVELOPMENT IN ARABIDOPSIS [J].
BOWMAN, JL ;
SMYTH, DR ;
MEYEROWITZ, EM .
PLANT CELL, 1989, 1 (01) :37-52
[5]   COMPLEMENTARY FLORAL HOMEOTIC PHENOTYPES RESULT FROM OPPOSITE ORIENTATIONS OF A TRANSPOSON AT THE PLENA-LOCUS OF ANTIRRHINUM [J].
BRADLEY, D ;
CARPENTER, R ;
SOMMER, H ;
HARTLEY, N ;
COEN, E .
CELL, 1993, 72 (01) :85-95
[6]   Applications and advantages of virus-induced gene silencing for gene function studies in plants [J].
Burch-Smith, TM ;
Anderson, JC ;
Martin, GB ;
Dinesh-Kumar, SP .
PLANT JOURNAL, 2004, 39 (05) :734-746
[7]   FLORAL HOMEOTIC MUTATIONS PRODUCED BY TRANSPOSON-MUTAGENESIS IN ANTIRRHINUM-MAJUS [J].
CARPENTER, R ;
COEN, ES .
GENES & DEVELOPMENT, 1990, 4 (09) :1483-1493
[8]   Evolution in action: Following function in duplicated floral homeotic genes [J].
Causier, B ;
Castillo, R ;
Zhou, JL ;
Ingram, R ;
Xue, YB ;
Schwarz-Sommer, Z ;
Davies, B .
CURRENT BIOLOGY, 2005, 15 (16) :1508-1512
[9]   PLENA and FARINELLI:: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development [J].
Davies, B ;
Motte, P ;
Keck, E ;
Saedler, H ;
Sommer, H ;
Schwarz-Sommer, Z .
EMBO JOURNAL, 1999, 18 (14) :4023-4034
[10]   Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development [J].
de Martino, Gemma ;
Pan, Irvin ;
Emmanuel, Eyal ;
Levy, Avraham ;
Irish, Vivian F. .
PLANT CELL, 2006, 18 (08) :1833-1845