EXISTENCE OF POSITIVE SOLUTIONS FOR INTEGRAL SYSTEMS OF THE WEIGHTED HARDY-LITTLEWOOD-SOBOLEV TYPE

被引:5
作者
Liu, Xiaoqian [1 ]
Lei, Yutian [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Hardy-Littlewood-Sobolev inequality; integral system; existence of positive solution; Serrin-type condition; SINGULARITY ANALYSIS; ASYMPTOTIC-BEHAVIOR; SHARP CONSTANTS; LIOUVILLE TYPE; SYMMETRY;
D O I
10.3934/dcds.2020018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence/nonexistence of positive solutions of a weighted Hardy-Littlewood-Sobolev type integral system. Such a system is related to the extremal functions of the weighted Hardy-Littlewood-Sobolev inequality. The Serrin-type condition is critical for existence of positive solutions in L-lo(c)infinity (R-n \ {0}). When the Serrin-type condition does not hold, we prove the nonexistence by an iteration process. In addition, we find three pairs of radial solutions when the Serrin-type condition holds. One is singular, and the other two are integrable in R-n and decaying fast and slowly respectively.
引用
收藏
页码:467 / 489
页数:23
相关论文
共 29 条
[1]   A SINGULARITY ANALYSIS OF POSITIVE SOLUTIONS TO AN EULER-LAGRANGE INTEGRAL SYSTEM [J].
Bebernes, Jerrold ;
Lei, Yutian ;
Li, Congming .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (02) :387-410
[2]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[3]   Weighted inequalities and Stein-Weiss potentials [J].
Beckner, William .
FORUM MATHEMATICUM, 2008, 20 (04) :587-606
[4]   Representation Formulae for Solutions to Some Classes of Higher Order Systems and Related Liouville Theorems [J].
Caristi, Gabriella ;
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :27-67
[5]  
Chen W., 2005, Discrete Contin Dyn Syst, VS, P164
[6]  
Chen WX, 2008, P AM MATH SOC, V136, P955
[7]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[8]   HARDY-LITTLEWOOD-SOBOLEV SYSTEMS AND RELATED LIOUVILLE THEOREMS [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (04) :653-671
[9]  
Gazzola F., 2002, P 4 INT C DYN SYST D, P327
[10]   Asymptotic behaviour of ground states [J].
Hulshof, J ;
VanDerVorst, CAM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) :2423-2431