Orthorhombic Nb2O5-x for Durable High-Rate Anode of Li-Ion Batteries

被引:64
作者
Liu, Zichao [1 ]
Dong, Wujie [2 ]
Wang, Jianbo [1 ]
Dong, Chenlong [1 ]
Lin, Yue [3 ]
Chen, I-Wei [4 ]
Huang, Fuqiang [1 ,2 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 国家重点研发计划;
关键词
ELECTROCHEMICAL ENERGY-STORAGE; HIGH-RATE INTERCALATION; LITHIUM INTERCALATION; PERFORMANCE; CAPACITANCE; KINETICS; ARRAYS;
D O I
10.1016/j.isci.2019.100767
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Li4Ti5O12 anode can operate at extraordinarily high rates and for a very long time, but it suffers from a relatively low capacity. This has motivated much research on Nb2O5 as an alternative. In this work, we present a scalable chemical processing strategy that maintains the size and morphology of nano-crystal precursor but systematically reconstitutes the unit cell composition, to build defect-rich porous orthorhombic Nb2O5-x with a high-rate capacity many times those of commercial anodes. The procedure includes etching, proton ion exchange, calcination, and reduction, and the resulting Nb2O5-x has a capacity of 253 mA h g(-1) at 0.5C, 187 mA h g(-1) at 25C, and 130 mA h g(-1) at 100C, with 93.3% of the 25C capacity remaining after cycling for 4,000 times, These values are much higher than those reported for Nb2O5 and Li4Ti5O12, thanks to more available surface/sub-surface reaction sites and significantly improved fast ion and electron conductivity.
引用
收藏
页数:27
相关论文
共 33 条
  • [1] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
  • [2] Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
  • [3] Black titanium dioxide (TiO2) nanomaterials
    Chen, Xiaobo
    Liu, Lei
    Huang, Fuqiang
    [J]. CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) : 1861 - 1885
  • [4] Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes
    Come, Jeremy
    Augustyn, Veronica
    Kim, Jong Woung
    Rozier, Patrick
    Taberna, Pierre-Louis
    Gogotsi, Pavel
    Long, Jeffrey W.
    Dunn, Bruce
    Simon, Patrice
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : A718 - A725
  • [5] Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting
    Cui, Houlei
    Zhao, Wei
    Yang, Chongyin
    Yin, Hao
    Lin, Tianquan
    Shan, Yufeng
    Xie, Yian
    Gu, Hui
    Huang, Fuqiang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) : 8612 - 8616
  • [6] In-Plane Assembled Orthorhombic Nb2O5 Nanorod Films with High-Rate Li+ Intercalation for High-Performance Flexible Li-Ion Capacitors
    Deng, Bohua
    Lei, Tianyu
    Zhu, Weihua
    Xiao, Liang
    Liu, Jinping
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (01)
  • [7] Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage
    Deng, Qinglin
    Li, Mengjiao
    Wang, Junyong
    Jiang, Kai
    Hu, Zhigao
    Chu, Junhao
    [J]. NANOTECHNOLOGY, 2018, 29 (18)
  • [8] Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres
    Du, Xiaoyong
    He, Wen
    Zhang, Xudong
    Yue, Yuanzheng
    Liu, Hong
    Zhang, Xueguang
    Min, Dandan
    Ge, Xinxia
    Du, Yi
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (13) : 5960 - 5969
  • [9] Niobium tungsten oxides for high-rate lithium-ion energy storage
    Griffith, Kent J.
    Wiaderek, Kamila M.
    Cibin, Giannantonio
    Marbella, Lauren E.
    Grey, Clare P.
    [J]. NATURE, 2018, 559 (7715) : 556 - +
  • [10] High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases
    Griffith, Kent J.
    Forse, Alexander C.
    Griffin, John M.
    Grey, Clare P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) : 8888 - 8899