Boundedness and asymptotic stability of nonlinear Volterra integro-differential equations using Lyapunov functional

被引:13
|
作者
El Hajji, Miled [1 ,2 ]
机构
[1] Tunis El Manar Univ, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
[2] Tech & Vocat Training Corp, Gen Studies Dept, Coll Telecom & Elect, Jeddah 2146, Saudi Arabia
关键词
BEHAVIOR; MODELS;
D O I
10.1016/j.jksus.2018.11.012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, I consider Lyapunov functionals combined with the Laplace transform to obtain boundedness results regarding the solutions of the nonlinear Volterra integro-differential equations x'(t) = A(t)x(t) + B(t) + integral(t)(0) C(t, s)f (x(s))ds + g(x(t)). Asymptotic stability results regarding the zero solution are carried out for the case where B(t)is identically zero. Numerical examples are proposed to perform the given results. (C) 2018 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:1516 / 1521
页数:6
相关论文
共 50 条