ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction

被引:63
|
作者
Chen, Xing [1 ]
Zhou, Zhihan [2 ]
Zhao, Yan [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
association prediction; disease; ensemble learning; link prediction; microRNA; SUPPRESSES TUMOR-GROWTH; HUMAN MICRORNA; PROGNOSTIC MARKER; PROSTATE-CANCER; BREAST-CANCER; LUNG-CANCER; EXPRESSION; TARGET; PROLIFERATION; METASTASIS;
D O I
10.1080/15476286.2018.1460016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, accumulating evidences have indicated miRNAs play critical roles in the progression and development of various human complex diseases, which pointed out that identifying miRNA-disease association could enable us to understand diseases at miRNA level. Thus, revealing more and more potential miRNA-disease associations is a vital topic in biomedical domain. However, it will be extremely expensive and time-consuming if we examine all the possible miRNA-disease pairs. Therefore, more accurate and efficient methods are being highly requested to detect potential miRNA-disease associations. In this study, we developed a computational model of Ensemble Learning and Link Prediction for miRNA-Disease Association prediction (ELLPMDA) to achieve this goal. By integrating miRNA functional similarity, disease semantic similarity, miRNA-disease association and Gaussian profile kernel similarity for miRNAs and diseases, we constructed a similarity network and utilized ensemble learning to combine rank results given by three classic similarity-based algorithms. To evaluate the performance of ELLPMDA, we exploited global and local Leave-One-Out Cross Validation (LOOCV), 5-fold Cross Validation (CV) and three kinds of case studies. As a result, the AUCs of ELLPMDA is 0.9181, 0.8181 and 0.9193+/-0.0002 in global LOOCV, local LOOCV and 5-fold CV, respectively, which significantly exceed almost all the previous methods. Moreover, in three distinct kinds of case studies for Kidney Neoplasms, Lymphoma, Prostate Neoplasms, Colon Neoplasms and Esophageal Neoplasms, 88%, 92%, 86%, 98% and 98% out of the top 50 predicted miRNAs has been confirmed, respectively. Besides, ELLPMDA is based on global similarity measure and applicable to new diseases without any known related miRNAs.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 50 条
  • [21] miRNA-Disease Association Prediction with Collaborative Matrix Factorization
    Shen, Zhen
    Zhang, You-Hua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    COMPLEXITY, 2017,
  • [22] MCMDA: Matrix completion for MiRNA-disease association prediction
    Li, Jian-Qiang
    Rong, Zhi-Hao
    Chen, Xing
    Yan, Gui-Ying
    You, Zhu-Hong
    ONCOTARGET, 2017, 8 (13) : 21187 - 21199
  • [23] MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction
    Chen, Xing
    Niu, Ya-Wei
    Wang, Guang-Hui
    Yan, Gui-Ying
    JOURNAL OF TRANSLATIONAL MEDICINE, 2017, 15
  • [24] QIMCMDA: MiRNA-Disease Association Prediction by q-Kernel Information and Matrix Completion
    Wang, Lin
    Chen, Yaguang
    Zhang, Naiqian
    Chen, Wei
    Zhang, Yusen
    Gao, Rui
    FRONTIERS IN GENETICS, 2020, 11
  • [25] TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction
    Chen, Xing
    Qu, Jia
    Yin, Jun
    FRONTIERS IN GENETICS, 2018, 9
  • [26] BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction
    Chen, Xing
    Xie, Di
    Wang, Lei
    Zhao, Qi
    You, Zhu-Hong
    Liu, Hongsheng
    BIOINFORMATICS, 2018, 34 (18) : 3178 - 3186
  • [27] DEMLP: DeepWalk Embedding in MLP for miRNA-Disease Association Prediction
    Wang, Xun
    Wang, Fuyu
    Wang, Xinzeng
    Qiao, Sibo
    Zhuang, Yu
    JOURNAL OF SENSORS, 2021, 2021
  • [28] DPFMDA: Distributed and privatized framework for miRNA-Disease association prediction
    Chen, Lixin
    Liu, Bingtao
    Yan, Chenggang
    PATTERN RECOGNITION LETTERS, 2018, 109 : 4 - 11
  • [29] Prediction of potential miRNA-disease associations using matrix decomposition and label propagation
    Qu, Jia
    Chen, Xing
    Yin, Jun
    Zhao, Yan
    Li, Zheng-Wei
    KNOWLEDGE-BASED SYSTEMS, 2019, 186
  • [30] Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization
    Chen, Xing
    Li, Shao-Xin
    Yin, Jun
    Wang, Chun-Chun
    GENOMICS, 2020, 112 (01) : 809 - 819