Hankel forms and sums of random variables

被引:34
作者
Helson, Henry [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Hankel form; Hilbert-Schmidt form; homogeneous Fourier series;
D O I
10.4064/sm176-1-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well known theorem of Nehari asserts on the circle group that bilinear forms in H-2 can be lifted to linear functionals on H-1. We show that this result can be extended to Hankel forms in infinitely many variables of a certain type. As a corollary we find a new proof that all the L-p norms on the class of Steinhaus series are equivalent.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 8 条
[1]   Hardy spaces of Dirichlet series and their composition operators [J].
Bayart, F .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03) :203-236
[2]  
BAYART F, 2002, THESIS U SCI TECHNOL
[3]   STUDY OF FOURIER COEFFICIENTS OF LP(G) FUNCTIONS [J].
BONAMI, A .
ANNALES DE L INSTITUT FOURIER, 1970, 20 (02) :335-&
[4]  
Helson H., 2005, Dirichlet Series
[5]  
Helson H., 1995, HARMONIC ANAL
[6]  
KACZMARZ S, 1951, THEORIE ORTHOGONALRE
[8]   The isoperimetric inequality and a theorem of Hardy and Littlewood [J].
Vukotic, D .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (06) :532-536