A MEMS Magnetic-Based Vibration Energy Harvester

被引:7
|
作者
Shin, A. [1 ]
Radhakrishna, U. [1 ]
Yang, Yuechen [1 ]
Zhang, Q. [2 ]
Gu, L. [2 ]
Riehl, P. [2 ]
Chandrakasan, A. P. [1 ]
Lang, J. H. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Analog Devices Inc, Wilmington, MA 01887 USA
来源
17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017) | 2018年 / 1052卷
关键词
D O I
10.1088/1742-6596/1052/1/012082
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents the design, analysis and integrated fabrication of a MEMS magnetic-based vibration energy harvester targeted for machine health monitoring. The design consists of Si-springs, permanent magnets as mass, and coils wound on the top and bottom side of the harvester package for mechanical-to-electrical energy conversion based on the Lorentz-force principle. The harvester is optimized to have its translational resonant-mode match external vibrations while separating higher-order modes. Mechanical and magnetic optimization of the harvester is carried out together with optimization of its power and control electronics in order to provide maximum output power from a vibration input that can vary its frequency by +/- 5%. The harvester achieves an open-circuit voltage amplitude of 145 mV and delivers 165 mu W to a matched load at the resonance frequency of 45.7 Hz.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] MEMS electrostatic vibration energy harvester without switches and inductive elements
    Dorzhiev, V.
    Karami, A.
    Basset, P.
    Dragunov, V.
    Galayko, D.
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [32] MEMS Piezoelectric Vibration Energy Harvester with In-Plane PZT Bimorph
    Wang, Lu
    Zhao, Libo
    Jiang, Zhuangde
    Li, Xiang
    Chen, Zihang
    Ryutaro, Maeda
    2019 14TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE-NEMS 2019), 2019, : 355 - 359
  • [33] Broadband vibration energy harvester based on nonlinear magnetic force and rotary pendulums
    Yan, Qiang
    Dai, Xianzhi
    Zhang, Zhang
    Wang, Lijun
    Wang, Yong
    SMART MATERIALS AND STRUCTURES, 2022, 31 (01)
  • [34] Optimization procedure of low frequency vibration energy harvester based on magnetic levitation
    Royo-Silvestre, I.
    Beato-Lopez, J. J.
    Gomez-Polo, C.
    APPLIED ENERGY, 2024, 360
  • [35] Nonlinear 2-DOFs Vibration Energy Harvester Based on Magnetic Levitation
    Abed, I.
    Kacem, N.
    Bouazizi, M. L.
    Bouhaddi, N.
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, AND ENERGY HARVESTING, VOL 9, 2015, : 39 - 45
  • [36] A Bistable Vibration Energy Harvester with Closed Magnetic Circuit
    Sato, Takahiro
    Sugisawa, Takeshi
    Igarashi, Hajime
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [37] Magnetic circuit modeling of chaotic vibration energy harvester
    Maruo, Akito
    Igarashi, Hajime
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 59 (02) : 567 - 575
  • [38] A chaotic vibration energy harvester using magnetic material
    Sato, Takahiro
    Igarashi, Hajime
    SMART MATERIALS AND STRUCTURES, 2015, 24 (02)
  • [39] A bistable vibration energy harvester with closed magnetic circuit
    20145000316827
    (1) Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Sapporo, Kita-ku; 060-0814, Japan, 1600, (IOP Publishing Ltd):
  • [40] Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester
    Bouhedma, Sofiane
    Zheng, Yuhang
    Lange, Fred
    Hohlfeld, Dennis
    SENSORS, 2019, 19 (05)