Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes

被引:54
|
作者
Cook, John B. [1 ]
Kim, Hyung-Seok [2 ]
Lin, Terri C. [1 ]
Robbennolt, Shauna [1 ]
Detsi, Eric [1 ]
Dunn, Bruce S. [2 ,3 ]
Tolbert, Sarah H. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
silicon; high power density; high energy density; mesoporous; magnesiothermic reduction; anode; Li ion battery; ANODE MATERIALS; THIN-FILMS; HIGH-CAPACITY; NANOPOROUS SI; NEGATIVE ELECTRODE; CARBON ELECTRODES; ROCKING-CHAIR; METAL-OXIDES; RICE HUSKS; PORE-SIZE;
D O I
10.1021/acsami.6b16447
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg2Si intermediate, and this results in samples with larger pores (diameter approximate to 90 nm), modest total porosity (34%), and modest specific surface area (50 m(2) g(-1)). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter approximate to 40 nm), higher porosity (41%), and a larger specific surface area (70 m(2) g(-1)). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g(-1) at 10 A g(-1) and retains 1292 mAh g(-1) at 5 A g(-1) after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g(-1) at 10 A g(-1) and retains 845 mAh g(-1) at 5 A g(-1) after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.
引用
收藏
页码:19063 / 19073
页数:11
相关论文
共 50 条
  • [41] The Influence of Structure on the Electrochemical and Thermal Response of Li-Ion Battery Electrodes
    Patel, Prehit
    Nelson, George J.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (05):
  • [42] THE INFLUENCE OF STRUCTURE ON THE ELECTROCHEMICAL AND THERMAL RESPONSE OF LI-ION BATTERY ELECTRODES
    Patel, Prehit
    Nelson, George J.
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2019, 2019,
  • [43] Solid-Binding Peptides as a Biotemplate for Li-Ion Battery Electrodes
    Barannikova, Evgenia
    Allen, Mark
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 634A - 634A
  • [44] MAGNETRON SPUTTERED ZNO ON MWCNT FOR LI-ION BATTERY NEGATIVE ELECTRODES
    Akbulut, H.
    Cetinkaya, T.
    Guler, M. O.
    Uysal, M.
    NANOCON 2014, 6TH INTERNATIONAL CONFERENCE, 2015, : 379 - 389
  • [45] In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review
    Cheng, Ximing
    Pecht, Michael
    ENERGIES, 2017, 10 (05)
  • [46] Mathematical Modeling of Multiple-Li-Dendrite Growth in Li-ion Battery Electrodes
    Takagishi, Yoichi
    Yamaue, Tatsuya
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [47] A flexible Li-ion battery with design towards electrodes electrical insulation
    Vieira, E. M. F.
    Ribeiro, J. F.
    Sousa, R.
    Correia, J. H.
    Goncalves, L. M.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (08)
  • [48] Thermal Structural Behavior of Electrodes in Li-Ion Battery Studied In Operando
    Baran, V.
    Dolotko, O.
    Muehlbauer, M. J.
    Senyshyn, A.
    Ehrenberg, H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1975 - A1982
  • [49] The effects of cycling on ionic and electronic conductivities of Li-ion battery electrodes
    Pouraghajan, Fezzeh
    Thompson, Andrea, I
    Hunter, Emilee E.
    Mazzeo, Brian
    Christensen, Jake
    Subbaraman, Ram
    Wray, Michael
    Wheeler, Dean
    JOURNAL OF POWER SOURCES, 2021, 492 (492)
  • [50] A Study on the Effect of Porosity and Particles Size Distribution on Li-Ion Battery Performance
    Taleghani, Sara Taslimi
    Marcos, Bernard
    Zaghib, Karim
    Lantagne, Gaetan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : E3179 - E3189