Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes

被引:54
|
作者
Cook, John B. [1 ]
Kim, Hyung-Seok [2 ]
Lin, Terri C. [1 ]
Robbennolt, Shauna [1 ]
Detsi, Eric [1 ]
Dunn, Bruce S. [2 ,3 ]
Tolbert, Sarah H. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
silicon; high power density; high energy density; mesoporous; magnesiothermic reduction; anode; Li ion battery; ANODE MATERIALS; THIN-FILMS; HIGH-CAPACITY; NANOPOROUS SI; NEGATIVE ELECTRODE; CARBON ELECTRODES; ROCKING-CHAIR; METAL-OXIDES; RICE HUSKS; PORE-SIZE;
D O I
10.1021/acsami.6b16447
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg2Si intermediate, and this results in samples with larger pores (diameter approximate to 90 nm), modest total porosity (34%), and modest specific surface area (50 m(2) g(-1)). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter approximate to 40 nm), higher porosity (41%), and a larger specific surface area (70 m(2) g(-1)). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g(-1) at 10 A g(-1) and retains 1292 mAh g(-1) at 5 A g(-1) after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g(-1) at 10 A g(-1) and retains 845 mAh g(-1) at 5 A g(-1) after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.
引用
收藏
页码:19063 / 19073
页数:11
相关论文
共 50 条
  • [1] A New Technique for In Situ Determination of the Active Surface Area Changes of Li-Ion Battery Electrodes
    Ratynski, Maciej
    Hamankiewicz, Bartosz
    Buchberger, Dominika A.
    Boczar, Maciej
    Krajewski, Michal
    Czerwinski, Andrzej
    BATTERIES & SUPERCAPS, 2020, 3 (10) : 1028 - 1039
  • [2] Mesoporous Silicon Nanostructures by Pulsed Laser Deposition as Li-ion Battery Anodes
    Biserni, E.
    Garino, N.
    Bassi, A. Li
    Bruno, P.
    Gerbaldi, C.
    17TH INTERNATIONAL MEETING ON LITHIUM BATTERIES (IMLB 2014), 2014, 62 (01): : 107 - 115
  • [3] Mesoporous silicon/carbon nanofibers composites anode materials for Li-ion battery
    Wang, Yuxin
    Chen, Juan
    Wang, Shengnian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [4] Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode
    Timo Ikonen
    Nathiya Kalidas
    Katja Lahtinen
    Tommi Isoniemi
    J. Jussi Toppari
    Ester Vázquez
    M. Antonia Herrero-Chamorro
    José Luis G. Fierro
    Tanja Kallio
    Vesa-Pekka Lehto
    Scientific Reports, 10
  • [5] Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode
    Ikonen, Timo
    Kalidas, Nathiya
    Lahtinen, Katja
    Isoniemi, Tommi
    Toppari, J. Jussi
    Vazquez, Ester
    Antonia Herrero-Chamorro, M.
    Fierro, Jose Luis G.
    Kallio, Tanja
    Lehto, Vesa-Pekka
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Preparation and Characterisation of Silicon/Carbon Nanotube Composite Electrodes for Li-Ion Battery Systems
    Cetinkaya, T.
    Tocoglu, U.
    Cevher, O.
    Guler, M. O.
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2013, 123 (02) : 398 - 400
  • [7] MXenes as Li-Ion Battery Electrodes: Progress and Outlook
    Shetti, Nagaraj P. P.
    Mishra, Amit
    Basu, Soumen
    Aminabhavi, Tejraj M. M.
    Alodhayb, Abdullah
    Pandiaraj, Saravanan
    ENERGY & FUELS, 2023, 37 (17) : 12541 - 12557
  • [8] A model for crack initiation in the Li-ion battery electrodes
    Panat, Rahul
    THIN SOLID FILMS, 2015, 596 : 174 - 178
  • [9] Nanomaterial-based Li-ion battery electrodes
    Li, NC
    Martin, CR
    Scrosati, B
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 240 - 243
  • [10] Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes
    Liu, Jinyun
    Zheng, Qiye
    Goodman, Matthew D.
    Zhu, Haoyue
    Kim, Jinwoo
    Krueger, Neil A.
    Ning, Hailong
    Huang, Xingjiu
    Liu, Jinhuai
    Terrones, Mauricio
    Braun, Paul V.
    ADVANCED MATERIALS, 2016, 28 (35) : 7696 - +