Tradeoffs for Reliable Quantum Information Storage in 2D Systems

被引:131
作者
Bravyi, Sergey [1 ]
Poulin, David [2 ]
Terhal, Barbara [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Sherbrooke, Dept Phys, Quebec City, PQ, Canada
关键词
PHYSICAL LIMITS; COMPUTATION; CODES;
D O I
10.1103/PhysRevLett.104.050503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
\We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd(2) = O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. The analogous tradeoff for the classical information storage is k root d = O(n).
引用
收藏
页数:4
相关论文
共 24 条
[1]   THE FUNDAMENTAL PHYSICAL LIMITS OF COMPUTATION [J].
BENNETT, CH ;
LANDAUER, R .
SCIENTIFIC AMERICAN, 1985, 253 (01) :48-56
[2]   Topological quantum error correction with optimal encoding rate [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2006, 73 (06)
[3]   The holographic principle [J].
Bousso, R .
REVIEWS OF MODERN PHYSICS, 2002, 74 (03) :825-874
[4]  
Bravyi S, 2005, QUANTUM INF COMPUT, V5, P187
[5]  
BRAVYI S, ARXIV10010344
[6]  
BRAVYI S, ARXIV09095200
[7]  
Bravyi S. B.., ARXIVQUANTPH9811052
[8]   A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes [J].
Bravyi, Sergey ;
Terhal, Barbara .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[10]  
Chuang I. N., 2000, Quantum Computation and Quantum Information