Existence of solutions for p(x)-Laplacian Dirichlet problem

被引:836
作者
Fan, XL [1 ]
Zhang, QH [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-laplacian; integral functionals; generalized Lebesgue-Sobolev spaces; critical points;
D O I
10.1016/S0362-546X(02)00150-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents several sufficient conditions for the existence of solutions for the Dirichlet problem of p(x)-Laplacian {-div(\delu\ (p(x)-2)delu) = f(x,u), x is an element of Omega, {u = 0, xis an element of partial derivativeOmega. Especially, an existence criterion for infinite many pairs of solutions for the problem is obtained. The discussion is based on the theory of the spaces L-p(x) (Omega) and W-0(1, p(x)) (Omega). (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1843 / 1852
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1987, MATH USSR IZVESTIYA
[2]  
Chang K., 1986, Critical Point Theory and Its Applications
[3]  
Fan X.L, 1996, Chin. Ann. Math., V17, P557
[4]  
Fan Xianling, 1996, Acta Mathematica Sinica. New Series, V12, P254
[5]   Regularity of nonstandard Lagrangians f(x,xi) [J].
Fan, XL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (06) :669-678
[6]   The quasi-minimizer of integral functionals with m(x) growth conditions [J].
Fan, XL ;
Zhao, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (07) :807-816
[7]   A class of DeGiorgi type and Holder continuity [J].
Fan, XL ;
Zhao, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (03) :295-318
[8]  
Fan XL., 1998, J. Gansu Educ. College, V12, P1
[9]   SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION [J].
KICHENASSAMY, S ;
VERON, L .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :599-615
[10]   REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS [J].
MARCELLINI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :1-30