Arithmetic properties of Ramanujan's general partition function for modulo 11

被引:1
|
作者
Kumar, Belakavadi R. Srivatsa [1 ]
Narendra, Ramakrishna [2 ]
Rajanna, Karpenahalli R. [2 ]
机构
[1] Manipal Acedemy Higher Educ, Manipal Inst Technol, Dept Math, Manipal 576104, India
[2] Acharya Inst Technol Soladevanahalli, Dept Math, Bengaluru 560107, India
关键词
Congruences; General partitions; q-identities; Theta-functions; CONGRUENCES; POWERS;
D O I
10.48129/kjs.v48i1.8827
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present work, for the general partition function p(r)(n), we establish five new infinite families of congruences modulo 11. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences of p(r)(n).
引用
收藏
页码:10 / 13
页数:4
相关论文
共 50 条
  • [1] Infinite Families of Congruences Modulo 5 for Ramanujan's General Partition Function
    Chetry, Jubaraj
    Saikia, Nipen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1603 - 1608
  • [2] Infinite families of congruences modulo 7 for Ramanujan's general partition function
    Saikia, Nipen
    Chetry, Jubaraj
    ANNALES MATHEMATIQUES DU QUEBEC, 2018, 42 (01): : 127 - 132
  • [3] The partition function modulo 3 in arithmetic progressions
    Geoffrey D. Smith
    Lynnelle Ye
    The Ramanujan Journal, 2016, 39 : 603 - 608
  • [4] The partition function modulo 3 in arithmetic progressions
    Smith, Geoffrey D.
    Ye, Lynnelle
    RAMANUJAN JOURNAL, 2016, 39 (03) : 603 - 608
  • [5] Arithmetic properties for a partition function related to the Ramanujan/Watson mock theta function ω(q)
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (02) : 545 - 562
  • [6] Congruences modulo powers of 5 for Ramanujan's φ function
    Du, Julia Q. D.
    Tang, Dazhao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
  • [7] Arithmetic properties of a partition pair function
    Chen, Shi-Chao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) : 1583 - 1594
  • [8] Arithmetic properties arising from Ramanujan’s theta functions
    M. S. Mahadeva Naika
    D. S. Gireesh
    The Ramanujan Journal, 2017, 42 : 601 - 615
  • [9] NEW CONGRUENCES MODULO 4 AND 8 FOR RAMANUJAN'S φ FUNCTION
    Du, Julia Q. D.
    Lovejoy, Jeremy
    Yao, Olivia X. M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 551 - 564
  • [10] Arithmetic properties arising from Ramanujan's theta functions
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    RAMANUJAN JOURNAL, 2017, 42 (03) : 601 - 615