Candidate gene case-control studies

被引:19
作者
Daly, AK [1 ]
机构
[1] Newcastle Univ, Pharmacogenet Grp, Sch Clin & Lab Sci, Sch Med, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
关键词
cancer; candidate gene; DNA repair; single nucleotide polymorphism; xenobiotic metabolism;
D O I
10.1517/phgs.4.2.127.22629
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Two main approaches to the identification of genes are involved in polygenic diseases. Use of family studies has generally been the preferred approach up until recently, but this is only feasible if the genetic component of the disease is relatively strong and DNA samples are available from other family members. Population case-control studies are useful both as an alternative and an adjunct to family studies. These can involve either whole genome scanning or candidate gene approaches. While whole genome scanning is likely to be widely used in the future once more information on genome-wide single nucleotide polymorphism distributions is available, at present, candidate gene studies are more feasible. When performing candidate gene case-control studies factors such as study design, methods for recruitment of case and controls, selection of candidate genes, functional significance of polymorphisms chosen for study and statistical analysis require close attention to ensure that only genuine associations are detected. Some examples of the successful use of candidate gene case-control studies are discussed and, to illustrate some potential problems in the design and interpretation of association studies, some specific examples of association studies on cancer are considered.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 110 条
[1]   Effect of high salt intake in mutant mice lacking bradykinin-B-2 receptors [J].
Alfie, ME ;
Sigmon, DH ;
Pomposiello, SI ;
Carretero, OA .
HYPERTENSION, 1997, 29 (01) :483-487
[2]   The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes [J].
Altshuler, D ;
Hirschhorn, JN ;
Klannemark, M ;
Lindgren, CM ;
Vohl, MC ;
Nemesh, J ;
Lane, CR ;
Schaffner, SF ;
Bolk, S ;
Brewer, C ;
Tuomi, T ;
Gaudet, D ;
Hudson, TJ ;
Daly, M ;
Groop, L ;
Lander, ES .
NATURE GENETICS, 2000, 26 (01) :76-80
[3]  
Ambrosone CB, 1999, CANCER RES, V59, P602
[4]   Cigarette smoking, N-acetyltransferase 2 genetic polymorphisms, and breast cancer risk [J].
Ambrosone, CB ;
Freudenheim, JL ;
Graham, S ;
Marshall, JR ;
Vena, JE ;
Brasure, JR ;
Michalek, AM ;
Laughlin, R ;
Nemoto, T ;
Gillenwater, KA ;
Harrington, AM ;
Shields, PG .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1996, 276 (18) :1494-1501
[5]  
Ariyoshi N, 2002, CANCER EPIDEM BIOMAR, V11, P890
[6]   METABOLIC OXIDATION PHENOTYPES AS MARKERS FOR SUSCEPTIBILITY TO LUNG-CANCER [J].
AYESH, R ;
IDLE, JR ;
RITCHIE, JC ;
CROTHERS, MJ ;
HETZEL, MR .
NATURE, 1984, 312 (5990) :169-170
[7]   The power of genomic control [J].
Bacanu, SA ;
Devlin, B ;
Roeder, K .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (06) :1933-1944
[8]   Phenol sulphotransferase SULT1A1*1 genotype is associated with reduced risk of colorectal cancer [J].
Bamber, DE ;
Fryer, AA ;
Strange, RC ;
Elder, JB ;
Deakin, M ;
Rajagopal, R ;
Fawole, A ;
Gilissen, RAHJ ;
Campbell, FC ;
Coughtrie, MWH .
PHARMACOGENETICS, 2001, 11 (08) :679-685
[9]   A POLYMORPHIC LOCUS NEAR THE HUMAN INSULIN GENE IS ASSOCIATED WITH INSULIN-DEPENDENT DIABETES-MELLITUS [J].
BELL, GI ;
HORITA, S ;
KARAM, JH .
DIABETES, 1984, 33 (02) :176-183
[10]   Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk [J].
Benhamou, S ;
Lee, WJ ;
Alexandrie, AK ;
Boffetta, P ;
Bouchardy, C ;
Butkiewicz, D ;
Brockmöller, J ;
Clapper, ML ;
Daly, A ;
Dolzan, V ;
Ford, J ;
Gaspari, L ;
Haugen, A ;
Hirvonen, A ;
Husgafvel-Pursiainen, K ;
Ingelman-Sundberg, M ;
Kalina, I ;
Kihara, M ;
Kremers, P ;
Le Marchand, L ;
London, SJ ;
Nazar-Stewart, V ;
Onon-Kihara, M ;
Rannug, A ;
Romkes, M ;
Ryberg, D ;
Seidegard, J ;
Shields, P ;
Strange, RC ;
Stücker, I ;
To-Figueras, J ;
Brennan, P ;
Taioli, E .
CARCINOGENESIS, 2002, 23 (08) :1343-1350