A nonhydrostatic, isopycnal-coordinate ocean model for internal waves

被引:25
作者
Vitousek, Sean [1 ]
Fringer, Oliver B. [1 ]
机构
[1] Stanford Univ, Environm Fluid Mech Lab, Stanford, CA 94305 USA
关键词
Nonhydrostatic model; Isopycnal coordinates; Multi-layer model; Internal waves; Solitary waves; Ocean modeling; FINITE-ELEMENT MODEL; FREE-SURFACE FLOW; NUMERICAL-MODEL; SOLITARY WAVES; CIRCULATION; EQUATIONS; STABILITY; DYNAMICS; GENERATION; STRAIT;
D O I
10.1016/j.ocemod.2014.08.008
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a nonhydrostatic ocean model with an isopycnal (density-following) vertical coordinate system. The primary motivation for the model is the proper treatment of nonhydrostatic dispersion and the formation of nonlinear internal solitary waves. The nonhydrostatic, isopycnal-coordinate formulation may be preferable to nonhydrostatic formulations in z- and sigma-coordinates because it improves computational efficiency by reducing the number of vertical grid points and eliminates spurious diapycnal mixing and solitary-wave amplitude loss due to numerical diffusion of scalars. The model equations invoke a mild isopycnal-slope approximation to remove small metric terms associated with diffusion and nonhydrostatic pressure from the momentum equations and to reduce the pressure Poisson equation to a symmetric linear system. Avoiding this approximation requires a costlier inversion of a non-symmetric linear system. We demonstrate that the model is capable of simulating nonlinear internal solitary waves for simplified and physically-realistic ocean-scale problems with a reduced number of layers. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 144
页数:27
相关论文
共 123 条
[21]  
2-L
[22]  
Casulli V, 1999, INT J NUMER METH FL, V30, P425, DOI 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO
[23]  
2-D
[24]   SEMI-IMPLICIT FINITE-DIFFERENCE METHODS FOR THE 2-DIMENSIONAL SHALLOW-WATER EQUATIONS [J].
CASULLI, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (01) :56-74
[25]   STABILITY, ACCURACY AND EFFICIENCY OF A SEMIIMPLICIT METHOD FOR 3-DIMENSIONAL SHALLOW-WATER FLOW [J].
CASULLI, V ;
CATTANI, E .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (04) :99-112
[26]   DAMEE-NAB: the base experiments [J].
Chassignet, EP ;
Arango, H ;
Dietrich, D ;
Ezer, T ;
Ghil, M ;
Haidvogel, DB ;
Ma, CC ;
Mehra, A ;
Paiva, AM ;
Sirkes, Z .
DYNAMICS OF ATMOSPHERES AND OCEANS, 2000, 32 (3-4) :155-183
[27]  
Chassignet EP, 2011, OPERATIONAL OCEANOGRAPHY IN THE 21ST CENTURY, P263, DOI 10.1007/978-94-007-0332-2_11
[28]   Fully nonlinear internal waves in a two-fluid system [J].
Choi, W ;
Camassa, R .
JOURNAL OF FLUID MECHANICS, 1999, 396 :1-36
[29]   A regularized model for strongly nonlinear internal solitary waves [J].
Choi, Wooyoung ;
Barros, Ricardo ;
Jo, Tae-Chang .
JOURNAL OF FLUID MECHANICS, 2009, 629 :73-85
[30]   Shear Instability for Stratified Hydrostatic Flows [J].
Chumakova, Lyuba ;
Menzaque, Fernando E. ;
Milewski, Paul A. ;
Rosales, Rodolfo R. ;
Tabak, Esteban G. ;
Turner, Cristina V. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (02) :183-197