In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries

被引:30
作者
Zheng, Shujun [1 ]
Chen, Yuyang [1 ]
Chen, Kai [1 ]
Yang, Shengyuan [1 ]
Bagherzadeh, Roohollah [3 ]
Miao, Yue-E [1 ]
Liu, Tianxi [1 ,2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Jiangnan Univ, Minist Educ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Wuxi 214122, Jiangsu, Peoples R China
[3] Amirkabir Univ Technol, Sch Adv Mat & Proc, Inst Adv Text Mat & Technol ATMT, Adv Fibrous Mat Lab, Tehran, Iran
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
POLYMER ELECTROLYTES; HIGH-VOLTAGE;
D O I
10.1039/d2ta02229j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyether-based composite electrolytes exhibit great promise to bridge the gap between solid polymer electrolytes (SPEs) and high-energy solid-state Li metal batteries. However, the practical application of polyether electrolytes is still hindered by their poor ionic conductivity and low oxidation potential. Herein, a topochemistry-driven polyether-based composite electrolyte is constructed in situ, by the cation polymerization of 1,3-dioxolane (DOL) to obtain poly(1,3-dioxolane) (PDOL) in a three-dimensional (3D) La0.56Li0.33TiO3 nanofiber (LLTO NF) skeleton, with a chemically stable interface and strong-coupled ionic conductivity. The spontaneous polymerization reaction results in the formation of a unique polymeric CH2-CH2-O-CH2-O- amorphous structure of PDOL, with a wide operation voltage (5.5 V) and an intimate interface within the LLTO NF skeleton. The continuous one-dimensional (1D) LLTO NFs and polymer chains act as bi-phase ion transport channels, enabling an improved conduction of 6.6 x 10(-4) S cm(-1). Furthermore, the LiF and Al-complex films derived from the solid electrolyte interphase (SEI) can redistribute the ion flux and ensure the structural stability of the Li anode. Thus, the polyether-based composite electrolyte achieves a remarkable cyclability (over 900 h at 0.1 mA cm(-2)) and satisfactory capacity retention (70.7% over 350 cycles). This polymer composite electrolyte design offers a unique perspective for linking in situ topochemistry design with safe and high-energy solid batteries.
引用
收藏
页码:19641 / 19648
页数:8
相关论文
共 50 条
  • [41] Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte
    Ran, Lingbing
    Tao, Shiwei
    Gentle, Ian
    Luo, Bin
    Li, Ming
    Rana, MdMasud
    Wang, Lianzhou
    Knibbe, Ruth
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 39355 - 39362
  • [42] Lithium difluorophosphate-modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Tan, Jiaxu
    Li, Xinhai
    Li, Qihou
    Wang, Zhixing
    Guo, Huajun
    Yan, Guochun
    Wang, Jiexi
    Li, Guangchao
    IONICS, 2022, 28 (07) : 3233 - 3241
  • [43] Ion Pair Integrated Organic-Inorganic Hybrid Electrolyte Network for Solid-State Lithium Ion Batteries
    Yang, Guang
    Fan, Baoyan
    Liu, Feihua
    Yao, Fangzhou
    Wang, Qing
    ENERGY TECHNOLOGY, 2018, 6 (12) : 2319 - 2325
  • [44] A Bilayer Electrolyte Design to Enable High-Areal-Capacity Composite Cathodes in Polymer Electrolytes Based Solid-State Lithium Metal Batteries
    Sahore, Ritu
    Yang, Guang
    Chen, Xi Chelsea
    Tsai, Wan-Yu
    Li, Jianlin
    Dudney, Nancy J.
    Westover, Andrew
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1409 - 1413
  • [45] Composite solid-state electrolyte based on hybrid poly(ethylene glycol)-silica fillers enabling long-life lithium metal batteries
    Mezzomo, Lorenzo
    Bonato, Stefano
    Mostoni, Silvia
    Di Credico, Barbara
    Scotti, Roberto
    D'Arienzo, Massimiliano
    Mustarelli, Piercarlo
    Ruffo, Riccardo
    ELECTROCHIMICA ACTA, 2022, 411
  • [46] Low Resistance and High Stable Solid-Liquid Electrolyte Interphases Enable High-Voltage Solid-State Lithium Metal Batteries
    Li, Xin
    Cong, Lina
    Ma, Shunchao
    Shi, Sainan
    Li, Yanan
    Li, Sijia
    Chen, Silin
    Zheng, Changhui
    Sun, Liqun
    Liu, Yulong
    Xie, Haiming
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (20)
  • [47] A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature
    Yu, Jing
    Kwok, Stephen C. T.
    Lu, Ziheng
    Effat, Mohammed B.
    Lyu, Yu-Qi
    Yuen, Matthew M. F.
    Ciucci, Francesco
    CHEMELECTROCHEM, 2018, 5 (19): : 2873 - 2881
  • [48] Flexible PVA/BMIMOTf/LLZTO composite electrolyte with liquid-comparable ionic conductivity for solid-state lithium metal battery
    Jeon, Hyesun
    Hoang, Hai Anh
    Kim, Dukjoon
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 128 - 139
  • [49] Electronegativity-Induced Single-Ion Conducting Polymer Electrolyte for Solid-State Lithium Batteries
    Hou, Tianyi
    Qian, Yumin
    Li, Dinggen
    Xu, Bo
    Huang, Zhenyu
    Liu, Xueting
    Wang, Haonan
    Jiang, Bowen
    Xu, Henghui
    Huang, Yunhui
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
  • [50] Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries
    Sun, Yan-Yun
    Zhang, Qi
    Fan, Lei
    Han, Dian-Dian
    Li, Li
    Yan, Lei
    Hou, Pei -Yu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 (877-885) : 877 - 885