In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries

被引:30
作者
Zheng, Shujun [1 ]
Chen, Yuyang [1 ]
Chen, Kai [1 ]
Yang, Shengyuan [1 ]
Bagherzadeh, Roohollah [3 ]
Miao, Yue-E [1 ]
Liu, Tianxi [1 ,2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Jiangnan Univ, Minist Educ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Wuxi 214122, Jiangsu, Peoples R China
[3] Amirkabir Univ Technol, Sch Adv Mat & Proc, Inst Adv Text Mat & Technol ATMT, Adv Fibrous Mat Lab, Tehran, Iran
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
POLYMER ELECTROLYTES; HIGH-VOLTAGE;
D O I
10.1039/d2ta02229j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyether-based composite electrolytes exhibit great promise to bridge the gap between solid polymer electrolytes (SPEs) and high-energy solid-state Li metal batteries. However, the practical application of polyether electrolytes is still hindered by their poor ionic conductivity and low oxidation potential. Herein, a topochemistry-driven polyether-based composite electrolyte is constructed in situ, by the cation polymerization of 1,3-dioxolane (DOL) to obtain poly(1,3-dioxolane) (PDOL) in a three-dimensional (3D) La0.56Li0.33TiO3 nanofiber (LLTO NF) skeleton, with a chemically stable interface and strong-coupled ionic conductivity. The spontaneous polymerization reaction results in the formation of a unique polymeric CH2-CH2-O-CH2-O- amorphous structure of PDOL, with a wide operation voltage (5.5 V) and an intimate interface within the LLTO NF skeleton. The continuous one-dimensional (1D) LLTO NFs and polymer chains act as bi-phase ion transport channels, enabling an improved conduction of 6.6 x 10(-4) S cm(-1). Furthermore, the LiF and Al-complex films derived from the solid electrolyte interphase (SEI) can redistribute the ion flux and ensure the structural stability of the Li anode. Thus, the polyether-based composite electrolyte achieves a remarkable cyclability (over 900 h at 0.1 mA cm(-2)) and satisfactory capacity retention (70.7% over 350 cycles). This polymer composite electrolyte design offers a unique perspective for linking in situ topochemistry design with safe and high-energy solid batteries.
引用
收藏
页码:19641 / 19648
页数:8
相关论文
共 50 条
  • [21] Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: A review
    Zhao, Chen-Zi
    Zhao, Bo-Chen
    Yan, Chong
    Zhang, Xue-Qiang
    Huang, Jia-Qi
    Mo, Yifei
    Xu, Xiaoxiong
    Li, Hong
    Zhang, Qiang
    ENERGY STORAGE MATERIALS, 2020, 24 (24) : 75 - 84
  • [22] Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries
    Liu, Qirong
    Chen, Qiqi
    Tang, Yongbing
    Cheng, Hui-Ming
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [23] Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting" Li-Electrolyte Interface for Solid State Lithium-Ion Batteries
    Yang, Luyi
    Wang, Zijian
    Feng, Yancong
    Tan, Rui
    Zuo, Yunxing
    Gao, Rongtan
    Zhao, Yan
    Han, Lei
    Wang, Ziqi
    Pan, Feng
    ADVANCED ENERGY MATERIALS, 2017, 7 (22)
  • [24] Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries
    Zhang, Jiaming
    Zeng, Yaping
    Li, Qiuping
    Tang, Zheng
    Sun, Dan
    Huang, Dan
    Zhao, Le
    Tang, Yougen
    Wang, Haiyan
    ENERGY STORAGE MATERIALS, 2023, 54 : 440 - 449
  • [25] A Silatrane:Molecule-Based Crystal Composite Solid-State Electrolyte for All-Solid-State Lithium Batteries
    Navarro-Suarez, Adriana M.
    Johansson, Patrik
    BATTERIES & SUPERCAPS, 2019, 2 (11) : 956 - 962
  • [26] Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries
    Song, Young-Woong
    Park, Sang-Jun
    Kim, Min-Young
    Kang, Byeong-Su
    Hong, Youngsun
    Kim, Woo Joong
    Han, Jong-Hun
    Lim, Jinsub
    Kim, Ho-Sung
    JOURNAL OF POWER SOURCES, 2022, 542
  • [27] Nonflammable quasi-solid-state electrolyte for stable lithium-metal batteries
    Sun, Qiushi
    Chen, Xiao
    Xie, Jian
    Xu, Xiongwen
    Tu, Jian
    Zhang, Peng
    Zhao, Xinbing
    RSC ADVANCES, 2019, 9 (72) : 42183 - 42193
  • [28] Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries
    Yu, Xingwen
    Liu, Yijie
    Goodenough, John B.
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 30703 - 30711
  • [29] Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries
    Xue, Chuanjiao
    Zhang, Xue
    Wang, Shuo
    Li, Liangliang
    Nan, Ce-Wen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24837 - 24844
  • [30] Dual-salt reinforced polyacrylonitrile-based composite solid electrolyte for stable lithium metal batteries
    Mu, Daobin
    Zhang, Yuxiang
    Liu, Ling
    Lu, Shijie
    Lv, Haijian
    Li, Zihan
    Dai, Zhongjia
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 688 : 756 - 765